Skip to main content
Log in

Spring phytoplankton assemblages in the Southern Ocean between Australia and Antarctica

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Variations of phytoplankton assemblages were studied in November–December 2001, in surface waters of the Southern Ocean along a transect between the Sub-Antarctic Zone (SAZ) and the Seasonal Ice Zone (SIZ; 46.9°–64.9°S; 142°–143°E; CLIVAR-SR3 cruise). Two regions had characteristic but different phytoplankton assemblages. Nanoflagellates(<20 μm) and pico-plankton (∼2 μm) occurred in similar concentrations along the transect, but were dominant in the SAZ, Sub-Antarctic Front (SAF), Polar Front Zone (PFZ) and the Inter-Polar Front Zone (IPFZ), (46.9°–56.9°S). Along the entire transect their average cell numbers in the upper 70 m of water column, varied from 3 × 105 to 1.1 × 106 cells l−1. Larger cells (>20 μm), diatoms and dinoflagellates, were more abundant in the Antarctic Zone-South (AZ-S) and the SIZ, (60.9°–64.9°S). In AZ-S and SIZ diatoms ranged between 2.7 × 105 and 1.2 × 106 cells l−1, dinoflagellates from 3.1 × 104 to 1.02 × 105 cells l−1. A diatom bloom was in progress in the AZ-S showing a peak of 1.8 × 106 cells l−1. Diatoms were dominated by Pseudo-nitzschia spp., Fragilariopsis spp., and Chaetoceros spp. Pseudo-nitzschia spp. outnumbered other diatoms in the AZ-S. Fragilaropsis spp. were most numerous in the SIZ. Dinoflagellates contained autotrophs (e.g. Prorocentrum) and heterotrophs (Gyrodinium/Gymnodinium, Protoperidinium). Diatoms and dinoflagellates contributed most to the cellular carbon: 11–25 and 17–124 μg C l−1, respectively. Small cells dominated in the northern region characterized by the lowest N-uptake and new production of the transect. Larger diatom cells were prevalent in the southern area with higher values of N-uptake and new production. Diatom and nanoflagellate cellular carbon contents were highly correlated with one another, with primary production, and productivity related parameters. They contributed up to 75% to the total autotrophic C biomass. Diatom carbon content was significantly correlated to nitrate uptake and particle export, but not to ammonium uptake, while flagellate carbon was well correlated to ammonium uptake, but not to export. Diatoms have contributed highly to particle export along the latitudinal transect, while flagellates played a minor role in the export.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Archer SD, Leakey RJG, Burkill PH, Sleigh MA (1996) Microbial dynamics in coastal waters of East Antarctica: Herbivory by heterotrophic dinoflagellates. Mar Ecol Prog Ser 139:239–255

    Article  Google Scholar 

  • Balech E (1976) Clave ilustrada de dinoflagellados Antarcticos, Publications of the Instituto Antartico Argentino, Buenos Aires 1–99

  • Banse K, English DC (1997) Near surface phytoplankton pigment from the Coastal Zone Color Scanner in the Subantarctic region southeast of New Zealand. Mar Ecol Prog Ser 156:51–66

    Article  Google Scholar 

  • Battle M, Bender ML, Tans PP, White JWC, Ellis JT, Conway T, Francey RJ (2000) Global carbon sinks and their variability inferred from atmospheric O2 and δ13C. Science 287:2467–2470

    Article  PubMed  CAS  Google Scholar 

  • Bentaleb I, Fontugne M, Descolas-Gros C, Girardin C, Mariotti A, Pierre C, Brunet C, Poisson A (1998). Carbon isotopic fractionation by plankton in the Southern Indian Ocean : relation between delta 13 C of particulate organic carbon and dissolved carbon dioxide. J Mar Syst 17:39–58

    Article  Google Scholar 

  • Boyd PW, Watson A, Law CS, Abraham E, Trull T, Murdoch R, Baker DCE, Bowie AR, Charette M, Groot P, Downing K, Frew R, Gall M, Hadfield M, Hall J, Harvey M, JamesonG, La Roche J, Liddicoat M, Ling R, Maldonado M, McKay RM, NodderS, Pickmere S, Pridmore R, Rintoul S, Safi K, Sutton P, Strzepek R, Tanneberger K, Turner S,Waite A, Zeldis J (2000) A mesoscale phytoplankton bloom in polar Southern Ocean stimulated by iron fertilization. Nature 407:695–702

    Article  PubMed  CAS  Google Scholar 

  • Brzezinski M A, Dickson ML, Nelson DM, Sambrotto R (2003) Ratios of Si, C and N uptake by microplankton in the Southern Ocean. Deep Sea Res II 50:619–633

    Article  CAS  Google Scholar 

  • Buesseler KO (1998) The decoupling of production and particle export in the surface ocean. Global Biogeochem Cycles 12:297–310

    Article  CAS  Google Scholar 

  • Cardinal D, Dehairs F, Cattaldo T, Andre L (2001) Geochemistry of suspended particles in the Subantarctic and Polar Front Zones south of Australia: constraints on export and advection processes. J Geophys Res 106:31637–31656

    Article  CAS  Google Scholar 

  • Cardinal D, Savoye N, Trull TW, Andre L, Kopczyńska EE, Dehairs F (2005a) Variations of carbon remineralisation in the Southern Ocean illustrated by the Baxs proxy. Deep Sea Res I 52:355–370

    Article  CAS  Google Scholar 

  • Cardinal D, Alleman LY, Dehairs F, Savoye N, Trull TW, Andre L (2005b) Relevance of silicon isotopes to Si-nutrient utilization and Si-source assessement in Antarctic waters. Global Biogeochem Cycles 19: GB2007. doi:10.1029/2004GB002364

    Article  CAS  Google Scholar 

  • Cardinal D, Savoye N, Trull TW, Kopczyńska EE, Dehairs F, Andre L (2006) Silicon isotopes in size fractionated diatoms in the spring Southern Ocean. Mar Chem. doi:10.1016/j.marchem.2006.04.006

  • Clementson LA, Parslow JS, Griffiths FB, LyneVD, Mackey DJ, HarrisGP, McKensie DC, Bonham PI, Rathbone CA, Rintoul S (1998) Controls on phytoplankton production in the Australasian sector of the Subtropical convergence. Deep Sea Res II 45:1627–1661

    Article  CAS  Google Scholar 

  • Coale KH, Johnson KS, Fittzwater SE, Gordon RM, Tanner S, Chavez FP, Ferioli L, Sakamoto C, Rodgers P, Milero F, Steinberg P, Nightingale P, Cooper D, Cochlan W, Kudela R (1996) A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383:495–501

    Article  CAS  PubMed  Google Scholar 

  • Crawford RM, Hinz F, Rynearson T (1997) Spatial and temporal distribution of assemblages of the diatom Corethron criophilum in the Polar Frontal region of the South Atlantic. Deep Sea Res II 44:479–496

    Article  Google Scholar 

  • Dehairs F, BaeyensW, Goeyens L (1992) Accumulation of suspended barite at mesopelagic depths and export production in the Southern Ocean. Science 258:1332–1335

    Article  PubMed  CAS  Google Scholar 

  • Dugdale RC, Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceanogr 12:196–206

    CAS  Google Scholar 

  • Eppley RW, Reid FMH, Strickland JDH (1970) The ecology of the plankton off La Jolla, California, in the period April through September 1967. Bull Scripps Inst Oceanogr 17:33–42

    Google Scholar 

  • Fiala M, Oriol L (1990) Light–temperature interactions on the growth of Antarctic diatoms. Polar Biol 10:441–449

    Article  Google Scholar 

  • Fiala M, Semeneh M, Oriol L (1998) Size-fractionated phytoplankton biomass and species composition in the Indian sector of the Southern Ocean during austral summer. J Mar Syst 17:179–194

    Article  Google Scholar 

  • Fiala M, Delille B, Dubreuil C, Kopczyńska EE, Leblanc K, Morvan J, Queguiner B, Blain S, Caillau C, Conan P, Corvaisier R, Denis M, Oriol L, Roy S (2003) Mesoscale surface distribution of biogeochemical characteristics associated with a frontal system in the Crozet Basin during austral summer 1999. Mar Ecol Prog Ser 249:1–14

    Article  CAS  Google Scholar 

  • Fiala M, Kopczyńska EE, Oriol L, Machado M-C (2004) Phytoplankton variability in the Crozet Basin frontal zone (Southwest Indian Ocean) during austral summer. J Mar Syst 50:243–261

    Article  Google Scholar 

  • Fiala M, Kuosa H, Kopczyńska EE, Oriol L, Delille D (2006) Spatial and seasonal heterogeneity of sea ice microbial communities in the first-year ice of Terre Adelie area (Antarctica). Aquat Microb Ecol 43:95–106

    Article  Google Scholar 

  • Franck VM, Brzeziński MA, Coale KH, Nelson DM (2000) Iron and silicic acid concentrations regulate Si uptake north and south of the Polar Frontal Zone in the Pacific Sector of the Southern Ocean. Deep Sea Res II 47:3315–3338

    Article  CAS  Google Scholar 

  • Froneman PW, McQuaid CD, Perissinotto R (1995) Biogeographic structure of the microphytoplankton assemblages of the south Atlantic and Southern Ocean during austral summer. J Plankton Res 17:1791–1802

    Article  Google Scholar 

  • Fukuchi M, Tamura S (1982) Chlorophyll a distribution in the Indian sector of the Antarctic Ocean in 1978–1979. Antarct Rec 74:143–162

    Google Scholar 

  • Garrison DL, Buck KR, Fryxell GA (1987) Algal assemblages in Antarctic pack ice and in ice-edge plankton. J Phycol 23:564–572

    Article  Google Scholar 

  • Goeyens L, Treguer P, Lancelot C, Methot S, Becquevort S, Morvan J, Dehairs F, Baeyens W (1991) Ammonium regeneration in the Scotia–Weddell Confluence area duringspring 1988. Mar Ecol Progr Ser 78:241–252

    Article  CAS  Google Scholar 

  • Grossi SM, Sullivan CW (1985) Sea ice microbial communities. V. The vertical zonation of diatoms in an Antarctic fast ice community. J Phycol 21:401–409

    Article  Google Scholar 

  • Harris GP, Feldmann GC, Griffiths FB (1993) Global oceanic production and climate change. In: Barale V, Schlittenhardt PM (eds) Ocean colour: theory and applications in a decade of CZCS experience. Kluwer, London, pp 237–270

    Google Scholar 

  • Hasle GR (1965) Nitzschia and Fragilariopsis species studied in the light and electron microscope 2. The group Pseudonitzschia. Skr Nor Vidensk-Akad Oslo 18:1–45

    Google Scholar 

  • Hasle GR (1969) An analysis of the phytoplankton of the Pacific Southern Ocean: abundance, composition and distribution during the Brategg expedition 1947/8. Hvalradets Skr 52:168

    Google Scholar 

  • Hense I, Bathmann UV, Timmermann R (2000) Plankton dynamics in frontal systems of the Southern Ocean. J Mar Syst 27:235–252

    Article  Google Scholar 

  • Hutchins DA, Sedwick PN, DiTullio GR, Boyd PW, Queguiner B, Griffiths FB, Crossley C (2001) Control of phytoplankton growth by iron and silicic acid availability in the subantarctic Southern Ocean: experimental results from the SAZ Project. J Geophys Res 106(No.C12):31,559–31,572

    Article  CAS  Google Scholar 

  • Jacobson DM, Anderson JM (1986) Widespread phagocytosis of ciliates and other protists by marine mixotrophic and heterotrophic thecate dinoflagellates. J Phycol 32:279–285

    Article  Google Scholar 

  • Jacques G (1983) Some ecological aspects of the Antarctic phytoplankton. Polar Biol 2:27–33

    Article  Google Scholar 

  • Jacques G, Panouse M (1991 Biomass and composition of size fractionated phytoplankton in the Weddell–Scotia Confluence area. Polar Biol 11:315–328

    Article  Google Scholar 

  • Jones GB, Curran MAJ, Swan HB, Greene RM, Griffiths FB, Clementson LA (1998) Influence of different water masses and biological activity on dimethylsulphide and dimthylsulphoniopropionate in the subantarctic zone of the Southern Ocean during ACE-1. J Geophys Res 103:16691–16701

    Article  CAS  Google Scholar 

  • Kopczyńska EE (1992) Dominance of microflagellates over diatoms in the Antarctic areas of deep vertical mixing and krill concentrations. J Plankton Res 14:1031–1054

    Article  Google Scholar 

  • Kopczyńska EE, Fiala M (2003) Surface phtoplankton composition and carbon biomass distribution in the Crozet Basin during austral summer of 1999: variability across frontal zones. Polar Biol 27:17–28

    Article  Google Scholar 

  • Kopczyńska EE, Weber LH, El-Sayed SZ (1986) Phytoplankton species composition and abundance in the Indian sector of the Antarctic Ocean. Polar Biol 6:161–169

    Article  Google Scholar 

  • Kopczyńska EE, Goeyens L, Semeneh M, Dehairs F (1995) Phytoplankton composition and cell carbon distribution in Prydz Bay, Antarctica: relation to organic particulate matter and its δ13 C values. J Plankton Res 17:685–707

    Article  Google Scholar 

  • Kopczyńska EE, Fiala M, Jeandel C (1998) Annual and interannual variability in phytoplankton at a permanent station off Kerguelen Islands, Southern Ocean. Polar Biol 20:342–351

    Article  Google Scholar 

  • Kopczyńska EE, Dehairs F, Elskens M, Wright S (2001) Phytoplankton an microzooplankton variability between the Subtropical and Polar fronts south of Australia: thriving under regenerative and new production in late summer. J Geophys Res 106(No.C12):31,597–31,609

    Google Scholar 

  • Ligowski R (1983) Phytoplankton of the Olaf Prydz Bay (Indian Ocean, East Antarctica) in February 1969. Pol Polar Res 4:21–32

    Google Scholar 

  • Lutjeharms JRE, Walters NM, Allanson BR (1985) Oceanic frontal systems and biological enhancement. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin, pp 11–21

    Google Scholar 

  • Martin JH, Fitzwater SE, Gordon RM (1990) Iron deficiency limits phytoplankton growth in Antarctic waters. Global Biogeochem Cycles 4:5–12

    Article  CAS  Google Scholar 

  • Martin JH, Gordon RM, Fitzwater SE (1991) The case for iron. Limnol Oceanogr 36:1793–1802

    Article  Google Scholar 

  • Medlin LK, Priddle J (1990) Polar marine diatoms. British Antarctic Survey 1–214

  • Metzl N, Tilbrook B, Poisson A (1999) The annual pCO2 cycle in the sub-Antarctic Ocean. Tellus Ser. B 51:849–861

    Article  Google Scholar 

  • Meyer MA, El-Sayed SZ (1983) Grazing of Euphausia superba Dana on natural phytoplankton populations. Polar Biol 1:193–197

    Article  Google Scholar 

  • Murphy PP, Feely RA, Gammon RH, Kelly KC, Watermann LS (1991) Autumn air-sea disequilibrium of CO2 in the South Pacific Ocean. Mar Chem 33:77–84

    Article  Google Scholar 

  • Orsi A, Whitworth III T, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res I 42:641–673

    Article  Google Scholar 

  • Park Y-H, Pollard RT, Read JF, Leboucher V (2002) A quasi-synoptic view of the frontal circulation in the Crozet basin during the Antares 4 cruise. Deep Sea Res II 49:1823–1842

    Article  CAS  Google Scholar 

  • Poisson A, Metzl N, Brunet C, Schauer B, Bres B, Ruiz-Pino D, Louanchi F (1993) Variability of sources and sinks of CO2 in the western Indian and Southern Oceans during the year 1991. J Geophys Res 8:22759–22778

    Google Scholar 

  • Priddle J, Fryxell G (1985) Handbook of the common plankton diatoms of the Southern Ocean: centrales except the genus Thalassiosira. British Antarctic Survey, Cambridge, pp 1–159

    Google Scholar 

  • Quetin LB, Ross RM (1985) Feeding by Antarctic krill, Euphausia superba: does size matter ? In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin, pp 372–377

    Google Scholar 

  • Riebesell U, Schloss I, Smetacek V (1991) Aggregation of algae released from melting sea ice: implications for seeding and sedimentation. Polar Biol 11:239–248

    Article  Google Scholar 

  • Safi KA, Griffiths FB, Hall JA (2007) Microzooplankton composition, biomass and grazing rates along the WOCE SR3 line between Tasmania and Antarctica. Deep Sea Res I 54:1025–1041

    Article  Google Scholar 

  • Sakshaug E, Holm- Hansen O (1984) Factors governing pelagic production. In: Holm-Hansen O, Bolis L, Gilles R (eds) Marine phytoplankton productivity. Springer, New York, pp 1–18

    Google Scholar 

  • Sakshaug E, Holm-Hansen O (1986) Photoadaptation in Antarctic phytoplankton: variations in growth rate, chemical composition and P versus I curves. J Plankton Res. 8:459–473

    Article  Google Scholar 

  • Savoye N, Dehairs F, Elskens M, Cardinal D, Kopczyńska EE, Trull TW, Wright S, Baeyens W, Griffiths FB (2004a) Regional variation of spring N-uptake and new production in the Southern Ocean. Geophys Res Lett 31:LO3301. doi:10.1029/2003GLO18946

    Google Scholar 

  • Savoye N, Buesseler KO, Cardinal D, Dehairs F (2004b) 234Th deficit and excess in the Southern Ocean during spring 2001: particle export and mineralization. Geophys Res Lett 31(12):L12301. doi:10.1029/2004GL019744

    Article  CAS  Google Scholar 

  • Scott P, McMinn A, Hosie G (1994) Physical parameters influencing diatom community structure in eastern Antarctic sea ice. Polar Biol 14:507–51

    Article  Google Scholar 

  • Semeneh M, Dehairs F, Elskens M, Baumann MEM, Kopczyńska EE, Lancelot C, Goeyens L (1998) Nitrogen uptake regime and phytoplankton community structure in the Atlantic and Indian sectors of the Southern Ocean. J Mar Syst 6:345–361

    Google Scholar 

  • Smayda TJ (1978) From phytoplankton to biomass. In: Sournia A (eds) Monographs on oceanographic methodology, vol.6, phytoplankton manual, UN Educ., Sci., and Cult. Org., Paris, pp.273–279

    Google Scholar 

  • Smayda TJ (1980) Phytoplankton species succession. In: Morris I (ed) The physiological ecology of phytoplankton. Blackwell Science, Malder, pp 493–570

    Google Scholar 

  • Sournia A, Grall JR, Jacques G (1979) Plankton diatoms and dinoflagellates along a meridian transect in the Southern Indian Ocean (Campagne “Antiprod I” du Marion-dufresne, mars 1977). Bot Mar 22:183–198

    Article  Google Scholar 

  • Steidinger KA, Tangen K (1997) Dinoflagellates. In: Tomas CR (ed) Identifying marine phytoplankton. Academic Press, California, pp 387–584

    Google Scholar 

  • Steyaert J (1973) Distribution of plankton diatoms along an African-Antarctic transect. Invest Pesq 37:295–328

    Google Scholar 

  • Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Plafsson J, Nojiri Y (2002) Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Res II 49:1601–1622

    Article  CAS  Google Scholar 

  • Trull T, Rintoul SR, Hadfield M, Abraham ER (2001) Circulation and seasonal evolution of polar waters south of Australia: Implications for iron fertilization of the Southern Ocean. Deep Sea Res II 48:2439–2466

    Article  CAS  Google Scholar 

  • Utermohl H (1958) Zur vervollkommnung der quantitaiven phytoplankton methodik. Mitt Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

  • Weber LH, El-Sayed SZ, Hampton I (1986) The variance spectra of phytoplankton, krill and water temperature in the Antarctic Ocean south of Africa. Deep Sea Res 33:1327–1342

    Article  Google Scholar 

  • Whitaker TM (1977) Sea ice habitats of Signy Island (South Orkneys) and their primary productivity. In: Llano GA (eds) Adaptations within Antarctic ecosystems. Gulf Publishing Co, Houston, pp 75–82

    Google Scholar 

  • Wright SW, Thomas DP, Marchant HJ, Higgins HW, Mackey DM, Mackey DJ (1996) Analysis of phytoplankton of the Australian sector of the Southern Ocean: Comparisons of microscopy and size frequency data with interpretations of pigment HPLC data using the “Chemtax” matrix factorisation program. Mar Ecol Progr Ser 144:285–298

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank the crew of the R/V Aurora Australis for assistance on board and Steve Rintoul as chief scientist. We are grateful to Brian Griffiths, Simon Wright, and two anonymous reviewers for their comments and improvements on the manuscript. Work of E. Kopczyńska was partly supported by grant 2 PO4 F 024 26 of the Polish Committee for Scientific Research. Part of this work was supported by the BELSPO, PODOII Programme on Global Change, Ecosystems and Biodiversity, Brussels, Belgium (Contracts EV/03/7A and EV/37/7C), and Vrije Universiteit Brussel grant GOA22. Shiptime was provided via Australia’s Antarctic Science Program grant #1343.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elżbieta E. Kopczyńska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopczyńska, E.E., Savoye, N., Dehairs, F. et al. Spring phytoplankton assemblages in the Southern Ocean between Australia and Antarctica. Polar Biol 31, 77–88 (2007). https://doi.org/10.1007/s00300-007-0335-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-007-0335-6

Keywords

Navigation