Skip to main content
Log in

Stability of ATP in Antarctic mineral soils

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The stability of exogenous ATP in Antarctic Ross desert soils has been assessed using bioluminescence monitoring of ATP-supplemented samples. Under typical east Antarctic dry valley summer conditions (−3 to +15°C), exogenous ATP was degraded with a half-life of between 0.5 and 30 h. The rate of degradation was affected, in order of significance, by soil biomass levels, temperature and water content. Such rapid removal of exogenous ATP strongly suggests that extracellular ATP from lysed cells in cold desiccated soils does not make a significant contribution to the standing ATP titre

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aycicek H, Oguz U, Karci K (2006) Comparison of results of ATP bioluminescence and traditional hygiene swabbing methods for the determination of surface cleanliness at a hospital kitchen. Int J Hyg Environ Health 209:203–206

    Article  PubMed  CAS  Google Scholar 

  • Bancroft K, Paul EA, Wiebe WJ (1976) The extraction and measurement of adenosine triphosphate from marine sediments. Limnol Oceanogr 21:473–480

    Article  CAS  Google Scholar 

  • Berg AS, Joern BC (2006) Sorption dynamics of organic and inorganic phosphorus compounds in soil. J Environ Qual 35:1855–1862

    Article  PubMed  CAS  Google Scholar 

  • Cameron RE, King J, David CN (1970) Microbiology, ecology and microclimatology of soil sites in dry valleys of South Victoria Land, Antarctica. In: Holdgate M (ed) Antarctic ecology, vol. 2. Academic, London, pp 702–716

    Google Scholar 

  • Cowan DA, Russell NR, Mamais A, Sheppard D (2002) Antarctic dry valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6:431–436

    Article  PubMed  CAS  Google Scholar 

  • Davidson CA, Griffith CJ, Peters AC, Fielding LM (1999) Evaluation of two methods for monitoring surface cleanliness––ATP bioluminescence and traditional hygiene swabbing. Luminescence 14:33–38

    Article  PubMed  CAS  Google Scholar 

  • D’Eustachio AJ, Levin EI (1967) Levels of adenosine triphosphate during bacterial growth. Bacteriol Proc 67:119

    Google Scholar 

  • Fairbanks BC, Woods LE, Bryant RJ, Elliot ET, Cole CV, Coleman DC. (1984) Limitations of ATP estimates of microbial biomass. Soil Biol Biochem 16:549–558

    Article  CAS  Google Scholar 

  • French DD, Smith VR (1986) Bacterial populations in soils of a sub-Antarctic island. Polar Biol 6:75–82

    Article  Google Scholar 

  • Friedmann EI, La Rock PA, Brunson JO (1980) Adenosine triphosphate (ATP), chlorophyll and organic nitrogen in endolithic microbial communities and adjacent soils in the dry valleys of southern Victoria land. Antarct J US 15:164–166

    Google Scholar 

  • Hamilton RD, Holm-Hansen O (1967) Adenosine triphosphate content in marine bacteria. Limnol Oceanogr 12:319–324

    CAS  Google Scholar 

  • Jenkinson DS, Davidson SA, Powlson DS (1979) Adenosine triphosphate and microbial biomass in soils. Soil Biol Biochem 11:521–527

    Article  CAS  Google Scholar 

  • Kramer S, Green DM (2000) Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. Soil Biol Biochem 32:179–188

    Article  CAS  Google Scholar 

  • La Ferla R, Alllegra A, Azzaro F, Greco S, Crisafi E (1995) Observations on the microbial biomass in two stations of Terra Nova Bay (Antarctica) by ATP and LPS measurements. Mar Ecol 16:307–315

    Google Scholar 

  • Majic-Knezev A, van der Kooij D (2004) Optimisation and significance of ATP analysis for measuring active biomass in granular activated carbon filters used in water treatment. Water Res 38:3971–3979

    Article  CAS  Google Scholar 

  • Marin JA, Hernandez T, Garcia C (2005) Bioremediation of oil refinery sludge by landfarming in semiarid conditions: influence on soil microbial activity. Environ Res 98:185–195

    Article  PubMed  CAS  Google Scholar 

  • Oliveira A, Pampulha ME (2006) Effects of long-term heavy metal contamination on soil microbial characteristics. J Biosci Bioeng 102:157–161

    Article  PubMed  CAS  Google Scholar 

  • Pontes-Buarques M, Tessis AC, Bonapace JA, Monte MB, Cortes-Lopez G, De Souza-Barros F, Vieyra A (2001) Modulation of adenosine 5′-monophosphate adsorption onto aqueous resident pyrite: potential mechanisms for prebiotic reactions. Orig Life Evol Biosph 31:343–362

    Article  PubMed  CAS  Google Scholar 

  • Roser DJ, Seppelt RD, Ashbolt N (1993) Microbiology of ornithogenic soils from the Windmill islands, Budd coast, continental Antarctica: some observations on methods for measuring soil biomass in ornithogenic soils. Soil Biol Biochem 25:177–183

    Article  Google Scholar 

  • Siragusa GR, Dorsa WJ, Cutter CN, Perino LJ, Koohmaraie M (1996) Use of a newly developed rapid microbial ATP bioluminescence assay to detect microbial contamination on poultry carcasses. J Biolumin Chemilumin 11:297–301

    Article  PubMed  CAS  Google Scholar 

  • Sisa R, Sixta J, Ruzek L, Storkanova G (2000) Biological activity of anthropogenic soils. Rostl Vyroba 46:55–61

    Google Scholar 

  • Sparling GP, Eiland FA (1983) Comparison of methods for measuring ATP and microbial biomass in soils. Soil Biol Biochem 15:227–229

    Article  CAS  Google Scholar 

  • Sparrow SD, Redlin M, Sparrow EB (1988) Comparison of methods for extracting adenosine triphosphate from three high latitude soils. Arctic Alpine Res 20:466–472

    Article  Google Scholar 

  • Tessis AC, Vieyra A (1996) Divalent cations modify adsorption of 5′-AMP onto precipitated calcium phosphate: a model for cation modulation of adsorptive processes in primitive aqueous environments. J Mol Evol 43:425–430

    PubMed  CAS  Google Scholar 

  • Tuovila BJ, La Rock PA (1987) Occurrence and preservation of ATP in Antarctic rocks and its implications in biomass determinations. Geomicrobiol J 5:105–118

    Article  CAS  Google Scholar 

  • van der Kooij D, Vrouwenvelder JS, Veenendal HR (2003) Elucidation and control of biofilm formation processes in water treatment and distribution using the unified biofilm approach. Water Sci Technol 47:83–90

    PubMed  Google Scholar 

  • Vincent WF (1988) Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge, p 304

    Google Scholar 

  • Vishniac HS (1993) The microbiology of Antarctic Soils. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 297–341

    Google Scholar 

  • Webster JW, Hampton GJ, Wilson JT, Ghiorse WC, Leach FR. (1985) Determination of microbial cell numbers in subsurface samples. Ground Water 23:17–25

    Article  CAS  Google Scholar 

  • West AW, Ross DJ, Cowling JC (1986) Changes in microbial C, N, P and ATP contents, numbers and respiration on storage of soil. Soil Biol Biochem 18:141–148

    Article  CAS  Google Scholar 

  • Zwartkruis E, Bettray G, Wilke T (1999) Rapid testing of microbial surface contamination on veal carcasses using ATP bioluminescence. Fleischwirtschaft 79:101–103

    Google Scholar 

Download references

Acknowledgments

This work was carried out in collaboration with the University of Waikato Antarctic Terrestrial Biology Research Program. The authors gratefully acknowledges the financial support of the South African NRF IRD program, the University of Waikato and Antarctica New Zealand. DAC particularly wishes to thank Dr Ian Hogg and Mr Mark Stevens of Waikato University for their support in the field, and Mr Simon Tuck for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don A. Cowan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cowan, D.A., Casanueva, A. Stability of ATP in Antarctic mineral soils. Polar Biol 30, 1599–1603 (2007). https://doi.org/10.1007/s00300-007-0324-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-007-0324-9

Keywords

Navigation