Skip to main content
Log in

Is the Scotia Sea a centre of Antarctic marine diversification? Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadensis (Arcoidea: Philobryidae)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The bivalve Lissarca notorcadensis is one of the most abundant species in Antarctic waters and has colonised the entire Antarctic shelf and Scotia Sea Islands. Its brooding reproduction, low dispersal capabilities and epizoic lifestyle predict limited gene flow between geographically isolated populations. Relationships between specimens from seven regions in the Southern Ocean and outgroups were assessed with nuclear 28S rDNA and mitochondrial cytochrome oxidase subunit I (COI) genes. The 28S dataset indicate that while Lissarca appears to be a monophyletic genus, there is polyphyly between the Limopsidae and Philobryidae. Thirteen CO1 haplotypes were found, mostly unique to the sample regions, and two distinct lineages were distinguished. Specimens from the Weddell and Ross Sea form one lineage while individuals from the banks and islands of the Scotia Sea form the other. Within each lineage, further vicariance was observed forming six regionally isolated groups. Our results provide initial evidence for reproductively isolated populations of L. notorcadensis. The islands of the Scotia Sea appear to act as centres of speciation in the Southern Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allcock AL, Breirley AS, Thorpe JP, Rodhouse PG (1997) Restricted geneflow and evoltuionary divergence between geographically separated populations of the Antarctic octopus Pareledone turqueti. Mar Biol 129:97–102

    Article  Google Scholar 

  • Allcock AL, Strugnell JM, Prodoehl P, Piatkowski U, Vecchione M (2007) A new species of Pareledone (Cephalopoda: Octopodidae) from the Antarctic Peninsula. Polar Biol doi:10.1007/s00300-006-0248-9

  • Allegrucci G, Carchini G, Todisco V, Convey P, Sbordoni V (2006) A molecular phylogeny of Antarctic chironomidae and its implications for biogeographical history. Polar Biol 29:320–326

    Article  Google Scholar 

  • Avise JC (2004) Molecular markers. Sinauer, Sunderland, p 541

    Google Scholar 

  • Barker PF, Burrell J (1977) The opening of the Drake passage. Mar Geol 25:15–34

    Article  Google Scholar 

  • Boenigk J, Pfandl K, Garstecki T, Harms H, Novarino G, Chatzinotas A (2006) Evidence for geographic isolation and signs of endemism within a protistan morphospecies. Appl Environ Microbiol 72(8):5159–5164

    Article  PubMed  CAS  Google Scholar 

  • Brey T, Hain S (1992) Growth, reproduction and production of Lissarca notorcadensis (Bivalvia, Philobryidae) in the Weddell Sea, Antarctica. Mar Ecol Prog Ser 82:219–226

    Google Scholar 

  • Brey T, Clarke A (1993) Population dynamics of marine benthic invertebrates in Antarctic and subantarctic enviroments: are there unique adaptaions? Antarct Sci 5(3):253–266

    Google Scholar 

  • Brey T, Starmans A, Magiera U, Hain S (1993) Lissarca notorcadensis (Bivalvia: Philobryidae) living on I sp. (Echinoidea:Cidaridae):population dynamics in limited space. Polar Biol 13:89–95

    Article  Google Scholar 

  • Clarke A (2000) Evolution in the cold. Antarct Sci 112:257

    Google Scholar 

  • Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol 41:47–114

    Google Scholar 

  • Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9(10):1657–1660

    Article  PubMed  CAS  Google Scholar 

  • Cope T, Linse K (2006) Morphological differences in Lissarca notorcadenis Melvill and Standen, 1907 from the Scotia, Weddell and Ross Seas. Deep-Sea Res II 53:903–911

    Article  Google Scholar 

  • Dell RK (1990) Antarctic Mollusca: with special reference to the fauna of the Ross Sea. Bull Roy Soc NZ 27:1–311

    Google Scholar 

  • Fahrbach E, Rohardt G, Krause G (1992) The Antarctic Coastal Current in the southeastern Weddell Sea. Polar Biol 12:171–182

    Article  Google Scholar 

  • Fahrbach E, Rohardt G, Schroeder M, Strass V (1994) Transport and structure of the Weddell Gyre. Annales Geophysicae 12:840–855

    Article  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2004) A Primer of conservation genetics. University Press, Cambridge pp 234

    Google Scholar 

  • Frati F, Spinsant G, Dallai R (2001) Genetic variation of mtCOII gene sequences in the collembolan Isotoma klovstadi from Victoria Land, Antarctica: evidence of population differentiation. Polar Biol 12:934–940

    Article  Google Scholar 

  • Freckman DW, Virginia RA (1997) Low-diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology 78(2):363–369

    Article  Google Scholar 

  • Griffiths HJ, Linse K, Crame JA (2003) SOMBASE—Southern Ocean Mollusc Database: a tool for biogeographic analysis in diversity and ecology. Org Divers Evol 3(3):207–213

    Article  Google Scholar 

  • Gutt J, Sirenko BI, Arntz WE, Smirnov IS, De Broyer C (2000) Biodiversity of the Weddell Sea: macrozoobenthic species (demrsal fish included) sampled during the expedition ANT XIII/3 (EASIZ I) with RV ‘Polarstern’. Ber Polarforsch 372

  • Hain S (1990) Die beschalten benthischen Mollusken (Gastropoda und Bivalvia) des Weddellmeeres, Antarktis. Berichte zur Polarforschung 70:1–181

    Google Scholar 

  • Held C (2000) Phylogeny and biogeography of serolid isopods (Crustacea, Isdopoda, Serolidae) and the use of ribosomal expension segments in molecular systematics. Mol Phylogenet Evol 15(2):165–178

    Article  PubMed  CAS  Google Scholar 

  • Held C, Wägele JW (2005) Cryptic speciation in the giant Antarctic isopod Glyptonotus antarcticus (Isopoda: Valvifera: Chaertiliidae). Scientia Marina 69(2):175–181

    Article  Google Scholar 

  • Held C, Leese F (2006) The utility of fast evolving molecular markers for studying speciation in the Antarctic benthos. Polar Biol 30:513–521

    Article  Google Scholar 

  • Hofmann EE, Klinck JM, Locarnini RA, Fach B, Murphy E (1998) Krill transport in the Scotia Sea and environs. Antarct Sci 10:406–415

    Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Lawver LA, Gahagan LM (2003) Evolution of Cenozoic seaways in the circum-Antarctic region. Paleogeogr Paleoclimatol Paleoecol 198(1–2):11–37

    Article  Google Scholar 

  • Linse K, Griffiths HJ, Barnes DKA, Clarke A (2006) Biodiversuty and biogeography of Antarctic and sub-Antarctic Mollusca. Deep-Sea Res II 53:985–1008

    Article  Google Scholar 

  • Littlewood DTJ (1994) Molecular phylogenetics of cupped oysters based on partial 28S rDNA gene sequences. Mol Phylogenet Evol 3:221–229

    Article  PubMed  CAS  Google Scholar 

  • Lörz AN, Maas EW, Linse K, Fenwick GD (2007) Epimeria schiaparelli sp. nov., an amphipod crustacean (family Epimeriidae) from the Ross Sea, Antarctica, with molecular characterisation of the species complex. Zootaxa 1402:23–37

    Google Scholar 

  • Maslen NR, Convey P (2006) Nematode diversity and distribution in the southern maritime Antarctic—clues to history? Soil Biol Biochem 38(10):3141–3151

    Article  CAS  Google Scholar 

  • Matsumoto M (2003) Phylogenetic analysis of the subclass. Pteriomorphia (Bivalvia) from mtDNA COI sequences. Mol Phylogenet Evol27(33):429–440

    Article  PubMed  CAS  Google Scholar 

  • Orsi AH, Nowlin WD, Whitworth T (1993) On the circulation and stratification of the Weddell Gyre. Deep-Sea Res 40:169–203

    Article  Google Scholar 

  • Orsi AH, Whitworth T, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res Part I-Oceanogr Res Pap 42(5):641–673

    Article  Google Scholar 

  • Page TJ, Linse K (2002) More evidence of speciation and dispersal across the Antarctic Polar Front through molecular systematics of Southern Ocean Limatula (Bivalvia: Limidae). Polar Biol 25:818–826

    Google Scholar 

  • Pawlowski J, Fahrni JF, Brykczynska U, Habura A, Bowser SS (2002) Molecular data reveal high taxonomic diversity of allogromiid Foraminifera in Explorers Cove (McMurdo Sound, Antarctica). Polar Biol 25(2):96–105

    Google Scholar 

  • Powell AWP (1951) Antarctic and sub-Antarctic Mollusca: Pelecypoda and Gastropoda. Discov Rep 26:49–196

    Google Scholar 

  • Prezant RS, Showers M, Winstead RL, Cleveland C (1992) Reproductive ecology of the Antarctic bivalve Lissarca notorcadensis (Philobryidae). Am Malacol Bull 9(2):173–186

    Google Scholar 

  • Raupach MJ, Wägele JW (2006) Distinguishing cryptic species in Antarctic Asellota (Crustacea: Isopoda)—a preliminary study of mitochondrial DNA in Acanthaspidia drygalskii. Antarct Sci 18:191–198

    Article  Google Scholar 

  • Raupach MJ, Held C, Wägele JW (2004) Multiple colonization of the deep sea by the Asellota (Crustacea: Peracarida: Isopoda). Deep-SEa Res II 51:1787–1795

    Article  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinform 19:1572–1574

    Article  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2005) Bayesian analysis of molecular evolution using MrBayes. In: Nielsen R (eds) Statistical methods in molecular evolution. Springer, New York

    Google Scholar 

  • Scherer RP, Aldahan A, Tulaczyk S, Possnert G, Engelhardt H, Kamb B (1998) Pleistocene collapse of the West Antarctic Ice sheet. Science 281:82–85

    Article  CAS  PubMed  Google Scholar 

  • Stary J, Block W (1998) Distribution and biogeography of oribatid mites (Acari: Oribatida) in Antarctica, the sub-Antarctic islands and nearby land areas. J Nat Hist 32(6):861–894

    Google Scholar 

  • Stein M, Heywood RB (1994) Antarctic environment—physical oceanography: the Antarctic Peninsula and Southwest Atlantic region of the Southern Ocean. In: El-Sayed SZ (eds) Southern Ocean ecology. CPU, Cambridge pp 11–24

    Google Scholar 

  • Stevens MI, Hogg ID (2003) Long-term isolation and recent range expansion revealed for the endemic springtail Gomphiocephalus hodgsoni from southern Victoria Land, Antarctica. Mol Ecol 12:2357–2369

    Article  PubMed  CAS  Google Scholar 

  • Stevens MI, Hogg ID (2006) Contrasting levels of mitochondrial DNA variability between mites (Penthalodidae) and springtails (Hypogastruridae) from the Trans-Antarctic Mountains suggest long-term effects of glaciation an dlife history on substitution rates, and speciation processes. Soil Biol Biochem 38:3171–3180

    Article  CAS  Google Scholar 

  • Stevens MI, Greenslade P, Hogg ID, Sunnucks P (2006) Southern hemisphere springtails: could any have survived glaciation of Antarctica? Mol Biol Evol 23:874–882

    Article  PubMed  CAS  Google Scholar 

  • Swofford D (2002) Paup*. Phylogenetic Analysis using Parsimony (*and other methods). (Version 4.10beta). Sinauer Associates, Sunderland, Massachusetts

  • Tevesz MJS (1977) Taxonomy and ecology of the Philobryidae and Limopsidae (Mollusca: Pelecypoda). Postilla 171:1–64

    Google Scholar 

  • Wagner DL, Liebherr JK (1992) Flightlessnes in insects. Trends Ecol Evol 7:216–220

    Article  Google Scholar 

  • Whitworth T, Nowlin WD, Orsi AH, Locarnini RA, Smith SG (1994) Weddell Sea Shelf Water in the Bransfield Strait and Weddell-Scotia Confluence. Deep-Sea Res Part I-Oceanogr Res Pap 41(4):629–641

    Article  Google Scholar 

Download references

Acknowledgment

We are grateful to the cruise leaders, captains, officers and crews of PFS Polarstern (ANT XIX-4, ANT XIX-5 and ANT XXI-2) and of RV Tangaroa (TAN0402) who enabled us to collect the samples for this study. Thanks are due to S. Lockhardt for access to ANDEEP I cidaroid sea urchins hosting Lissarca and to H. Griffiths for providing the map. NERC (NER/M/S/2003/00102) funded the core research programme. The FRST Program CO1X0502 supported the work on the Ross Sea samples held by the NIWA Marine Invertebrate Collection. This paper is a contribution to British Antarctic Survey core project ‘BIOPEARL’, ANDEEP publication no 71 and linked with the SCAR ‘EBA’ programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Linse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linse, K., Cope, T., Lörz, AN. et al. Is the Scotia Sea a centre of Antarctic marine diversification? Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadensis (Arcoidea: Philobryidae). Polar Biol 30, 1059–1068 (2007). https://doi.org/10.1007/s00300-007-0265-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-007-0265-3

Keywords

Navigation