Polar Biology

, 30:625 | Cite as

The two giant sister species of the Southern Ocean, Dissostichus eleginoides and Dissostichus mawsoni, differ in karyotype and chromosomal pattern of ribosomal RNA genes

  • L. Ghigliotti
  • F. Mazzei
  • C. Ozouf-Costaz
  • C. Bonillo
  • R. Williams
  • C.-H. C. Cheng
  • E. Pisano
Original Paper


The two giant notothenioid species, the Patagonian toothfish Dissostichus eleginoides and the Antarctic toothfish D. mawsoni, are important components of the Antarctic ichthyofauna and heavily exploited commercially. They have similar appearance and size, both are piscivorous and bentho-pelagic, but differ in their geographic distribution and absence/presence of the antifreeze trait. We karyotyped these two sister species by analyzing specimens collected from multiple Antarctic and sub-Antarctic sites. Both species have a diploid number of 48, but differ in karyotypic formula, (2m + 2sm + 44a) for D. eleginoides and (2m + 4sm + 42a) for D. mawsoni, due to an extra pair of submetacentric chromosomes in the latter. Chromosomal fluorescence in situ hybridization with rDNA probes revealed unexpected species-specific organization of rRNA genes; D. mawsoni possesses two rDNA loci (versus one locus in D. eleginoides), with the second locus mapping to its additional submetacentric chromosome. The additional rRNA genes in D. mawsoni may be a cold-adaptive compensatory mechanism for growth and development of this large species in freezing seawater.


Antarctica Chromosomes Dissostichus Ribosomal genes Toothfish 



The Italian National Programme for Antarctic Research (PNRA), the Muséum national d’Histoire Naturelle of Paris and IPEV (ICOTA Project), the US NSF Office of Polar Programs (OPP 0231006 to C.-H.C.C.) provided financial support. The Australian Antarctic Division supported the participation of E. Pisano in the 1993 cruise on board the RSV Aurora Australis (Anare project N.728). We are grateful to the crews of R/V Nathaniel Palmer and R/V Tangaroa for logistic support during the ICEFISH 2004 Cruise ( and Western Ross Sea Voyage 2004. The study is in the framework of the SCAR Scientific Research Program EBA (Evolution and Biodiversity in Antarctica).


  1. Almeida-Toledo LF, Ozouf-Costaz C, Foresti F, Bonillo C, Porto-Foresti F, Daniel-Silva MFZ (2002) Conservation of the 5S-bearing chromosome pair and co-localization with major rDNA clusters in five species of Astyanax (Pisces, Characidae). Cytogenet Genome Res 97:229–233PubMedCrossRefGoogle Scholar
  2. Balushkin AV (2000) Morphology, classification, and evolution of notothenioid fishes of the Southern Ocean (Notothenioidei, Perciformes). J Ichthyol 40(Suppl 1):S74–S109Google Scholar
  3. Boron A, Ozouf-Costaz C, Coutanceau J-P, Woroniecka K (2006) Gene mapping of 28S and 5S rDNA sites in the spined loach Cobitis taenia (Pisces, Cobitidae) from a diploid population and a diploid–tetraploid population. Genetica. DOI 10.1007/s10709–005–5536–8Google Scholar
  4. Brickle P, MacKenzie K, Pike A (2005) Parasites of the Patagonian toothfish, Dissostichus eleginoides Smitt 1898, in different parts of the Subantarctic. Polar Biol 28:663–671CrossRefGoogle Scholar
  5. Burke WD, Sing D, Eickbush TH (2003) R5 retrotrasposons insert into a family of infrequently transcribed 28S rRNA genes of Planaria. Mol Biol Evol 20(8):1260–1270PubMedCrossRefGoogle Scholar
  6. Capriglione T, Odierna G, Canapa A, Caputo V, Nisi Cerioni PN, Olmo E (2000) Characterization of Tc1 transposon-like sequences in notothenioids. Ital J Zool 67(Suppl 1):123–126CrossRefGoogle Scholar
  7. CCAMLR (2006) Statistical bulletin, vol 18 (1996–2005). CCAMLR, AustraliaGoogle Scholar
  8. Chen L, DeVries AL, Cheng C-HC (1997) Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc Natl Acad Sci USA 94:3811–3816PubMedCrossRefGoogle Scholar
  9. Cheng C-HC, Detrich HW III (2006) Molecular ecophysiology of Antarctic notothenioid fish. Phil Trans Roy Soc B (in press)Google Scholar
  10. Cheung VG, Nowak N, Jang W, Kirsch IR, Zhao S, Chen X-N, Furey TS, KimU-J, Kuo W-L, Olivier M, Conroy J, Kasprzyk A, Massa H, Yonescu R, Sait S, Thoreen C, Snijders A, Lemyre E, Bailey JA, Bruzel A, Burrill WD, Clegg SM, Collins S, Dhami P, Friedman C, Han CS, Herrick S, Lee J, Ligon AH, Lowry S, Morley M, Narasimhan S, Osoegawa K, Peng Z, Plajzer-Frick I, Quade BJ, Scott D, Sirotkin K, Thorpe AA, Gray JW, Hudson J, Pinkel D, Ried T, Rowen L, Shen-Ong GL, Strausberg RL, Birney E, Callen DF, Cheng J-F, Cox DR, Doggett NA, Carter NP, Eichler EE, Haussler D, Korenberg JR, Morton CC, Albertson D, Schuler G, de Jong PJ, Trask BJ (2001) Integration of cytogenetic landmarks into the draft sequence of the human genome. Nature 409:953–958PubMedCrossRefGoogle Scholar
  11. De Lucchini S, Andronico F, Nardi I (1997) Molecular structure of the rDNA intergenic spacer (IGS) in Triturus: implications for the hypervariability of rDNA loci. Chromosoma 106:315–326PubMedCrossRefGoogle Scholar
  12. DeVries AL, Cheng C-HC (2005) Antifreeze proteins in polar fishes. In: Farrell AP, Steffensen JF (eds) Fish physiology, vol 22. Academic, San Diego, pp 155–201Google Scholar
  13. DeWitt HH, Heemstra PC, Gon O (1990) Nototheniidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, pp 279–330Google Scholar
  14. Doussau De Bazignan M, Ozouf-Costaz C (1985) Une technique rapide d’analyse chromosomique appliquée à sept espèces de poissons antarctiques. Cybium 9:5–74Google Scholar
  15. Drouin G (2000) Expressed retrotransposed 5S rRNA genes in the mouse and rat genomes. Genome 43:213–215PubMedCrossRefGoogle Scholar
  16. Dubcovsky J, Dvorak J (1995) Ribosomal RNA multigene loci: nomads of the Triticeae genomes. Genetics 140:1367–1377PubMedGoogle Scholar
  17. Duhamel G, Gasco N, Davaine P (2005) Poissons des îles Kerguelen et Crozet. Guide régional de l’océan austral. Muséum National d’Histoire Naturelle, ParisGoogle Scholar
  18. Eastman JT, DeVries AL (2000) Aspects of body size and gonadal histology in the Antarctic toothfish, Dissostichus mawsoni, from McMurdo Sound, Antarctica. Polar Biol 23:189–195CrossRefGoogle Scholar
  19. Falquet J, Creusot R, Dron M (1997) Molecular analyses of Phaseolus vulgaris rDNA unit and characterization of a satellite DNA homologous to IgS subrepeats. Plant Physiol Biochem 35:611–622Google Scholar
  20. Fischer W, Hureau JC (1985) FAO species identification sheets for fishery purposes, vol 2. Southern Ocean (CCAMLR Convention Areas 48, 58 and 88). FAO, RomeGoogle Scholar
  21. Gon O, Heemstra PC eds (1990) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, GrahamstownGoogle Scholar
  22. Hanchet S, Horn P, Stevenson M (2003) Fishing in the ice: is it sustainable? Water Atmos 11:24–25Google Scholar
  23. Hayasaki M, Morikawa T, Legget JM (2001) Intraspecific variation of 18S-5,8S-26S rDNA sites revealed by FISH and RFLP in wild oat, Avena agadiriana. Genes Genet Syst 76:9–14PubMedCrossRefGoogle Scholar
  24. Hochachka PW, Somero GN (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, New YorkGoogle Scholar
  25. Horn PL (2002) Age and growth of Patagonian toothfish (Dissostichus eleginoides) and Antarctic toothfish (Dissostichus mawsoni) in waters from the New Zealand subantarctic to the Ross Sea, Antarctica. Fish Res 56:275–287CrossRefGoogle Scholar
  26. Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biemont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigo R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quetier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957PubMedCrossRefGoogle Scholar
  27. Jordan G (1987) At the heart of the nucleolus. Nature 329:489–499PubMedCrossRefGoogle Scholar
  28. Kidwell MG, Lisch DR (2000) Transposable elements and host genome evolution. Trends Ecol Evol 15:95–99PubMedCrossRefGoogle Scholar
  29. King M (1993) Species evolution: the role of chromosomes change. Cambridge University Press, CambridgeGoogle Scholar
  30. Klinkhardt M, Tesche M, Greven H (1995) Database of fish chromosomes. Westarp-Wissenschaften, MagdeburgGoogle Scholar
  31. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosome. Hereditas 52:201–220CrossRefGoogle Scholar
  32. Long EO, Dawid IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727–764PubMedCrossRefGoogle Scholar
  33. Martins C (2006) Chromosomes and repetitive DNAs: a contribution to the knowledge of the fish genome. In: Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG (eds) Fish cytogenetics. Science Publishers, Inc. Enfield (NH) USAGoogle Scholar
  34. Martins C, Galetti PM (2001) Two 5S rDNA arrays in neotropical fish species: is it a general rule for fishes? Genetica 111:439–446PubMedCrossRefGoogle Scholar
  35. Mazzei F, Ghigliotti L, Bonillo C, Coutanceau J-P, Ozouf-Costaz C, Pisano E (2004) Chromosomal patterns of major and 5S ribosomal DNA in six icefish species (Perciformes, Notothenioidei, Channichthyidae). Polar Biol 28:47–55Google Scholar
  36. Mazzei F, Ghigliotti L, Lecointre G, Ozouf-Costaz C, Coutanceau J-P, Detrich HW III, Pisano E. (2006) Karyotypes of basal lineages in notothenioid fishes: the genus Bovichtus. Polar Biol 29:1071–1076Google Scholar
  37. Mitelman F (ed) (1995) An international system for human cytogenetic nomenclature (ISCN). Karger, BaselGoogle Scholar
  38. Near TJ (2004) Estimating divergence times of notothenioid fishes using a fossil-calibrated molecular clock. Antarct Sci 16:37–44CrossRefGoogle Scholar
  39. Near TJ, Pesavento J, Cheng C-H C (2004) Phylogenetic investigations of Antarctic notothenioid fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16S rRNA. Mol Phylogenet Evol 32:881–891PubMedCrossRefGoogle Scholar
  40. Ozouf-Costaz C, Hureau JC, Beaunier M (1991) Chromosome studies on fish of the suborder Notothenioidei collected in the Weddell Sea during EPOS 3 cruise. Cybium 15:271–289Google Scholar
  41. Ozouf-Costaz C, Pisano E, Thaeron C, Hureau JC (1997) Antarctic fish chromosome banding: Significance for evolutionary study. Cybium 21:399–410Google Scholar
  42. Ozouf-Costaz C, Pisano E, Thaeron C, Hureau JC (1999) Karyological survey of the Notothenioid fish occurring in Adélie Land (Antarctica). In: Séret B, Sire JY (eds) Proc 5th Indo-Pac Fish Conf Nouméa 1997. Soc fr Ichtyol, Paris, pp 427–440Google Scholar
  43. Ozouf-Costaz C, Brandt J, Korting C, Pisano E, Bonillo C, Coutanceau J-P, Volff J-N (2004) Genome dynamics and chromosomal localization of the non-LTR retrotransposons Rex1 and Rex3 in Antarctic fish. Antarct Sci 16:51–57CrossRefGoogle Scholar
  44. Parker RW, Paige KN, DeVries AL (2002) Genetic variation among populations of the Antarctic toothfish: evolutionary insights and implications for conservation. Polar Biol 25:256–261Google Scholar
  45. Pedrosa-Harand A, Souza de Almeida CC, Mosiolek M, Blair MW, Schweizer D, Guerra M (2006) Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theor Appl Genet 112:924–933PubMedCrossRefGoogle Scholar
  46. Phillips RB (2006) Application of fluorescence in situ hybridization (FISH) to genome mapping in fishes. In: Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG (eds) Fish cytogenetics. Science Publishers Inc, Enfield (NH) USA Google Scholar
  47. Pisano E, Ozouf-Costaz C (2003) Cytogenetics and evolution in extreme environment: the case of Antarctic fishes. In: Val AL, Kapoor BG (eds) Fish adaptations. Science Publishers Inc., Enfield, pp 309–330Google Scholar
  48. Pisano E, Coscia MR, Mazzei F, Ghigliotti L, Coutanceau J-P, Ozouf-Costaz C, Oreste U (2006) Cytogenetic mapping of immunoglobulin heavy chain genes in Antarctic fish. Genetica DOI 10.1007/s10709-006-0015-4Google Scholar
  49. Rabova M, Rab P, Ozouf-Costaz C (2001) Extensive polymorphism and chromosomal characteristics of ribosomal DNA in a loach fish, Cobitis vardarensis (Ostaryophysi, Cobitidae) detected by different banding techniques and fluorescence in situ hybridization (FISH). Genetica 111(1–3):413–422PubMedCrossRefGoogle Scholar
  50. Raskina O, Belayayev A, Nevo E (2004) Quantum speciation in Aegilops: molecular cytogenetic evidence from rDNA cluster variability in natural population. Proc Natl Acad Sci USA 101:14818–14823PubMedCrossRefGoogle Scholar
  51. Redi CA, Garagna S, Zacharias H, Zuccotti M, Capanna E (2001) The other chromatin. Chromosoma 110:136–147PubMedGoogle Scholar
  52. Reed KM, Phillips RB (2000) Structure and organization of the rDNA intergenic spacer in lake trout (Salvelinus namaycush). Chromosome Res 8:5–16PubMedCrossRefGoogle Scholar
  53. Schubert I (1984) Mobile nucleolus organizing regions (NORs) in Allium (Liliaceae s. lat.)?—Interferences from the specificity of silver staining. Plant Syst Evol 144:291–305CrossRefGoogle Scholar
  54. Smith PJ, Gaffney PM, Purves M (2001) Genetic markers for identification of Patagonian toothfish and Antarctic toothfish. J Fish Biol 58:1190–1194CrossRefGoogle Scholar
  55. Sola L, De Innocentiis S, Gornung E, Papalia S, Rossi AR, Marino G, De Marco P, Cataudella S (2000) Cytogenetic analysis of Epinephelus marginatus (Pisces: Serranidae), with the chromosome localization of the 18S and 5S rRNA genes and of the (TTAGGG)n telomeric sequence. Mar Biol 137:47–51CrossRefGoogle Scholar
  56. Stupar RM, Song J, Tek AL, Cheng Z, Dong F, Jiang J (2002) Highly condensed potato pericentromeric heterochromatin contains rDNA-related tandem repeats. Genetics 162:1435–1444PubMedGoogle Scholar
  57. Volff JN (2005) Genome evolution and biodiversity in teleost fish. Heredity 94:280–294PubMedCrossRefGoogle Scholar
  58. White MJD (1973) Animal cytology and evolution. Cambridge University Press, CambridgeGoogle Scholar
  59. Zhuo L, Reed KM, Phillips RB (1995) Hypervariability of ribosomal DNA at multiple chromosomal sites in lake trout (Salvelinus namaycush). Genome 38:487–497PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • L. Ghigliotti
    • 1
  • F. Mazzei
    • 1
  • C. Ozouf-Costaz
    • 2
  • C. Bonillo
    • 2
  • R. Williams
    • 3
  • C.-H. C. Cheng
    • 4
  • E. Pisano
    • 1
  1. 1.Department of BiologyUniversity of GenovaGenovaItaly
  2. 2.Département Systématique et EvolutionCNRS UMR 7138, Museum National d’Histoire NaturelleParisFrance
  3. 3.Antarctic DivisionKingstonAustralia
  4. 4.Department of Animal BiologyUniversity of IllinoisUrbanaUSA

Personalised recommendations