Polar Biology

, Volume 30, Issue 5, pp 607–618 | Cite as

Deep-sea meiobenthic communities underneath the marginal ice zone off Eastern Greenland

Original Paper


Marginal ice zones (MIZ) are known to be the most highly productive systems in the Arctic Ocean with large amounts of primary production reaching the deep seafloor. This study characterizes the effect of the ice-edge related primary production and subsequent phytodetritus sedimentation on deep-sea meiobenthic communities, particularly nematodes, along the Eastern Greenland continental margin in July 2000. Results were based on data from six stations along a depth transect crossing the MIZ with the shallowest stations under the ice-cover (656 and 1,198 m), intermediate stations at the ice-edge (1,560 and 2,129 m), and deepest stations in ice-free areas (2,735 and 3,033 m). The presence of the ice-cover significantly affected the availability of organic matter on the deep seafloor. The present results confirm a close bentho-pelagic coupling in the area of investigation. Enhanced flux of phytodetritus from primary production to the benthic system appears at stations underneath or close to the ice-edge and at the sampling sites in ice-free areas. The availability of phytodetritus at these stations enhanced bacterial activities, meiofauna abundances, and the number of nematodes species.


Polar region Bathymetrical gradient Ice-edge Nematodes 

Supplementary material


  1. Barnett PRO, Watson J, Conelly D (1984) A multiple corer for taking virtually undisturbed samples from shelf, bathyal and abyssal sediments. Oceanol Acta 7:399–408Google Scholar
  2. Beukema JJ, Cadee GC (1991) Growth rates of the bivalve Macoma baltica in the Wadden Sea during a period of eutrophication: relationships with concentrations of pelagic diatoms and flagellates. Mar Ecol Prog Ser 68:249–256Google Scholar
  3. Boetius A, Lochte K (1994) Regulation of microbial enzymatic degradation of OM in deep-sea sediments. Mar Ecol Prog Ser 104:299–307Google Scholar
  4. Christensen H, Kanneworff E (1985) Sedimenting phytoplankton as a major food source for suspension and deposit feeders in the Øresund. Ophelia 24:223–244Google Scholar
  5. Clarke KR, Green RH (1988) Statistical design and analysis for a “biological effects” study. Mar Ecol Prog Ser 46:226–231Google Scholar
  6. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. 2nd edn. PRIMER-E, PlymouthGoogle Scholar
  7. Cooney RT, Coyle KO (1982) Trophic implications of cross-shelf copepod distributions in the southeastern Bering Sea. Mar Biol 70:187–196CrossRefGoogle Scholar
  8. Coyle KO, Cooney RT (1988) Estimating carbon flux to pelagic grazers in the ice-edge zone of the eastern Bering Sea. Mar Biol 98:299–306CrossRefGoogle Scholar
  9. Danovaro R, Gambi C (2002) Biodiversity and trophic structure of nematodes assemblages in seagrass systems: evidence for a coupling with changes in food availability. Mar Biol 141:667–677CrossRefGoogle Scholar
  10. De Grisse AT (1969) Redescription ou modification de quelques techniques utilisees dans l’etude de nematodes phytoparasitires. Meded, Rijsfakulteit Landbouwneten-scheppen. Gent 34:351–369Google Scholar
  11. Drazen JC, Baldwin RJ, Smith KL Jr (1998) Sediment community response to a varying food supply at an abyssal station in the NE Pacific. Deep Sea Res II 45:893–913CrossRefGoogle Scholar
  12. Falk-Peterson S, Sargent JR, Henderson J, Hegeseth EN, Hop H, Okolodkoy YB (1998) Lipids and fatty acids in ice algae and phytoplankton from the marginal ice zone in the Barents Sea. Polar Biol 20:41–47CrossRefGoogle Scholar
  13. Falk-Peterson S, Hop H, Budgell WP, Hegeseth EN, Korsnes R, Loeyning TB, Oerbaek JB, Kawamura T, Shirasawa K (2000) Physical and ecological processes in the marginal ice zone of the northern Barents Sea during the summer melt period. J Mar Syst 27:131–159CrossRefGoogle Scholar
  14. Findlay RH, Dobbs FC (1993) Quantitative description of microbial communities using lipid analysis. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis Publishers, Boca Raton, pp 271–284Google Scholar
  15. Findlay RH, King GM, Watling L (1989) Efficiency of phospholipid analysis in determining microbial biomass in sediments. Appl Environ Microbiol 55:2888–2893PubMedGoogle Scholar
  16. Gooday AJ (1988) A benthic foraminiferal response to the deposition of phytodetritus in the deep sea. Nature 332:70–73CrossRefGoogle Scholar
  17. Graf G (1992) Benthic pelagic coupling a benthic view. Oceanogr Mar Biol Annu Rev 30:149–190Google Scholar
  18. Greiser N, Faubel A (1988) Biotic factors. In: Higgens RP, Thiel H (eds) Introduction to the study of meiofauna. Smithsonian Institution Press, Washington, pp 79–114Google Scholar
  19. Hagerman L, Josefson AB, Jense JN (1996) Benthic macrofauna and demersal fish. In: Jorgensen BB, Richardson K (eds) Eutrophication in coastal marine ecosystems, vol 52. American Geophysical Union, Washington, pp 155–178Google Scholar
  20. Hansen JLS, Jøsefson AB (2004) Ingestion by deposit-feeding macro-zoobenthos in the aphotic zone does not affect the pool of live pelagic diatoms in the sediment. J Exp Mar Biol Ecol 308:59–84CrossRefGoogle Scholar
  21. Hargrave BT, Von Bondungen B, Stoffyn-Egli P, Mudies PJ (1994) Seasonal variability in particle sedimentation under permanent ice cover in the Arctic Ocean. Cont Shelf Res 14:279–293CrossRefGoogle Scholar
  22. Hegseth EN (1998) Primary production of the northern Barents Sea. Polar Res 17:113–123Google Scholar
  23. Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanogr Mar Biol Ann Rev 23:399–489Google Scholar
  24. Jensen P (1987) Feeding ecology of free-living aquatic nematodes. Mar Ecol Prog Ser 35:187–196Google Scholar
  25. Köster M, Jensen P, Meyer-Reil L-A (1991) Hydrolytic activity associated with organisms and biogenic structures in deep-sea sediments. In: Chrost R (ed) Microbial enzymes in aquatic environments. Springer, Berlin Heidelberg New York, pp 298–310Google Scholar
  26. Lambshead PJD, Ferrero T, Wolff GA (1995) Comparison of the vertical distribution of nematodes from two contrasting abyssal sites in the Northeast Atlantic subject to different seasonal inputs of phytodetritus. Int Rev Ges Hydrobiol 80:327–331CrossRefGoogle Scholar
  27. Levin LA, Etter RE, Rex MA, Gooday AJ, Smith CR, Pineda J, Stuart CT, Hessler RR, Pawson D (2001) Environmental influences on regional deep-sea species diversity. Ann Rev Ecol Syst 32:51–93CrossRefGoogle Scholar
  28. Lochte K (1992) Bacterial standing stock and consumption of organic carbon in the benthic boundary layer of the abyssal North Atlantic. In: Rowe GT, Pariente V (eds) Deep-sea food chains and the global carbon cycle. Kluwer Academic, Dordrecht, pp 1–10Google Scholar
  29. Lovvorn JR, Cooper LW, Marjorie LB, De Ruyck CC, Bump JK, Grebmeier JM (2005) Organic matter pathways to zooplankton and benthos under pack ice in late winter and open water in late summer in the north-central Bering Sea. Mar Ecol Prog Ser 291:135–150Google Scholar
  30. Machoczek D (1989) Untersuchungen historischer hydrographischer Daten des Europanischen Nordmeeres im Hinblick auf moderne Vorstellungen zur Wassermassenbildung und Zirkulation. DHI, Wiss Tech Ber, pp 1–77Google Scholar
  31. McMahon KW, Ambrose WG Jr, Johnson BJ, Ming-Yi S, Lopez GR, Clough LM, Carroll ML (2006) Benthic community response to ice algae and phytoplankton in Ny Alesund, Svalbard. Mar Ecol Prog Ser 310:1–14Google Scholar
  32. Moens T, Vincx M (1997) Observations on the feeding ecology of estuarine nematodes. J Mar Biol Assoc UK 77:211–227Google Scholar
  33. Moodley L, Middleburg JJ, Boschker HTS, Duineveld GCA, Pel R, Herman MJ, Heip CHR (2002) Bacteria and foraminifera: key players in a short-term deep-sea benthic response to phytodetritus. Mar Ecol Prog Ser 236:23–29Google Scholar
  34. Muthumbi AW, Vanreusel A, Duineveld G, Soetaert K, Vincx M (2004) Nematode community structure along the continental slope off the Kenyan Coast, western Indian Ocean. Int Rev Hydrobiol 89:188–205CrossRefGoogle Scholar
  35. Netto SA, Gallucci F, Fonseca G (2005) Meiofauna communities of continental slope and deep-sea sites off SE Brazil. Deep Sea Res I 52:845–859CrossRefGoogle Scholar
  36. Petersen GH, Curtis MA (1980) Differences in energy flow through major components of subarctic, temperate and tropical marine shelf ecosystems. Dana 1:53–64Google Scholar
  37. Pfannkuche O (1985) The deep-sea meiofauna of the Porcupine Seabight and abyssal plain (NE Atlantic): population structure, distribution, standing stock. Oceanol Acta 8:343–353Google Scholar
  38. Pfannkuche O, Boetius A, Lochte K, Lundgreen U, Thiel H (1999) Response of deep-sea benthos to sedimentation patterns in the north-east Atlantic in 1992. Deep Sea Res I 46:573–596CrossRefGoogle Scholar
  39. Piepenburg D (2005) Recent research on arctic benthos: common notions need to be revised. Polar Biol 28:733–755CrossRefGoogle Scholar
  40. Ramseier RO, Garrity C, Bauerfeind E, Peinert R (1999) Sea-ice impact on long-term particle flux in the Greenland Seas’s Is Odden-Nordbukta region, 1985–1996. J Geophys Res 104:5329–5343CrossRefGoogle Scholar
  41. Ramseier RO, Garrity C, Martin T (2001) An overview of sea-ice conditions in Greenland Sea and the relationship of oceanic sedimentation to the ice regime. In: Scäafer P, Ritzrau W, Schlüter M, Thiede J (eds) The Northern North Atlantic—a changing environment. Springer, Berlin Heidelberg New York, pp 19–38Google Scholar
  42. Rowe GT, Boland S, Phoel WC, Anderson RF, Biscaye PE (1994) Deep-sea floor respiration as an indication of lateral input of biogenic detritus from continental margins. Deep Sea Res II 41:657–668CrossRefGoogle Scholar
  43. Rudels B, Björk G, Nilsson J, Winsor P, Lake I, Nohr C. (2005) The interactions between waters from the Arctic Ocean and the Nordic Seas north of Fram Strait and along the East Greenland current: results from the Arctic Ocean-02 Oden Expedition. J Mar Syst 55:1–30CrossRefGoogle Scholar
  44. Sakshaug E (1997) Biomass and productivity distributions and their variability in the Barents Sea. ICES J Mar Sci 54:341–350CrossRefGoogle Scholar
  45. Sakshaug E, Skjodal HR (1989) Life at the ice-edge. Ambio 18:60–67Google Scholar
  46. Schewe I, Soltwedel T (2003) Benthic response to ice-edge induced particle flux in the Arctic Ocean. Polar Biol 26:610–620CrossRefGoogle Scholar
  47. Schratzberger M, Warwick RM (1998) Effects of the intensity and frequency of organic enrichment on two estuarine nematode communities. Mar Ecol Prog Ser 164:83–94Google Scholar
  48. Shuman FR, Lorenzen CF (1975) Quantitative degradation of chlorophyll by a marine herbivore. Limnol Oceanogr 20:580–586CrossRefGoogle Scholar
  49. Soetaert K, Heip C (1995) Nematode assemblages of deep-sea and shelf break sites in north Atlantic and Mediterranean Sea. Mar Ecol Prog Ser 125:71–83Google Scholar
  50. Soetaert K, Heip C, Vincx M (1995) Nematode community structure along a Mediterranean shelf slope gradient. PZNI I Mar Ecol 16:1–18Google Scholar
  51. Soetaert K, Herman PMJ, Middelburg JJ (1996) Dynamic response of deep-sea sediments to seasonal variations: a model. Limnol Oceanogr 41:1651–1668CrossRefGoogle Scholar
  52. Soetaert K, Vanaverbeke J, Heip C, Herman PMJ, Middelburg JJ, Sandee A, Duineveld GCA (1997) Nematode distribution in ocean margin sediments of the Goban Spur (northeast Atlantic) in relation to sediment geochemistry. Deep Sea Res 44:1671–1683CrossRefGoogle Scholar
  53. Soetaert K, Muthumbi A, Heip C (2002) Size and shape of ocean margin nematodes: morphological diversity and depth related patterns. Mar Ecol Prog Ser 242:179–193Google Scholar
  54. Sokal RR, Rohlf FJ (1997) Biometry. The principles and practice of statistics in biological research, 3rd edn. WH Freeman and Company, New YorkGoogle Scholar
  55. Soltwedel T, Pfannkuche O, Thiel H (1996) The size structure of deep-sea metazoan meiobenthos in the NE-Atlantic: nematode size spectra in relation to environmental variables. J Mar Biol Assoc UK 76:327–344CrossRefGoogle Scholar
  56. Soltwedel T, Mokievsky V, Schewe I (2000) Benthic activity and biomass on the Yermak Plateau and in adjacent deep-sea regions northwest of Svalbard. Deep Sea Res Part I 47:1761–1785CrossRefGoogle Scholar
  57. Steyaert M, Herman PMJ, Moens T, Widdows J, Vincx M (2001) Tidal migration of nematodes on an estuarine tidal flat (the Molenplaat, Schelde Estuary, SW Netherlands). Mar Ecol Prog Ser 224:299–304CrossRefGoogle Scholar
  58. Strass VH, Nöthig EM (1996) Seasonal shifts in ice edge phytoplankton blooms in the Barents Sea related to the water column stability. Polar Biol 16:409–422Google Scholar
  59. Tamelander T, Renaud PE, Hop H, Carroll ML, Ambrose WG Jr, Hobson KA (2006) Trophic relationships and pelagic-benthic coupling during summer in the Barents Sea marginal ice zone, revealed by stable carbon and nitrogen isotope measurements. Mar Ecol Prog Ser 310:33–46Google Scholar
  60. Thiel H (1978) Benthos in upwelling regions. In: Boje R, Tomczak M (eds) Upwelling ecosystems. Springer, Berlin Heidelberg New York, pp 124–138Google Scholar
  61. Thiel H (1983) Meiobenthos and nanobenthos of the deep sea. In: Rowe GT (ed) The Sea, vol 8. Wiley, New York, pp 167–230Google Scholar
  62. Thistle D, Sherman K (1985) The nematode fauna of a deep-sea site exposed to strong near-bottom currents. Deep Sea Res 32:1077–1088CrossRefGoogle Scholar
  63. Tietjen JH (1984) Distribution and species diversity of deep-sea nematodes in the Venezuela Basin. Deep Sea Res 31:119–132CrossRefGoogle Scholar
  64. Tietjen JH (1989) Ecology of deep-sea nematodes from Puerto Rico Trench area and Hatteras Abyssal Plain. Deep Sea Res 36:1567–1575CrossRefGoogle Scholar
  65. Turley CM, Lochte K, Patterson DJ (1988). A barophilic flagellate isolated from 4500 m in the mid-north Atlantic. Deep Sea Res 35:1079–1092CrossRefGoogle Scholar
  66. Vanaverbeke J, Soetaert K, Heip C, Vanreusel A (1997a) The metazoan meiobenthos along the continental slope of the Goban Spur (NE Atlantic). J Sea Res 38:281–292CrossRefGoogle Scholar
  67. Vanaverbeke J, Arbizu PM, Dahms HU, Scminke HK (1997b) The metazoan meiobenthos along a depth gradient in the Arctic Laptev Sea with special attention to nematode communities. Polar Biol 18:391–401CrossRefGoogle Scholar
  68. Vanaverbeke J, Soetaert K, Vincx M (2004a) Changes in morphometric characteristics of nematode communities during a spring phytoplankton bloom deposition. Mar Ecol Prog Ser 273:139–146Google Scholar
  69. Vanaverbeke J, Steyaert M, Soetaert K, Rousseau V, Van Gansbeke D, Parent JY, Vincx M. (2004b) Changes in structural and functional diversity of nematode communities during a spring phytoplankton bloom in the southern North Sea. J Sea Res 52:281–292CrossRefGoogle Scholar
  70. Vanhove S, Wittoek J, De Smet G, Van de Berghe B, Herman RL, Bak RPM, Nieuwland G, Vosjan JH, Boldrin A, Rabitti S, Vincx M (1995) Deep-sea meiofauna communities in Antarctica: structural analysis and relation with the environment. Mar Ecol Prog Ser 127:65–76Google Scholar
  71. Vanhove S, Arntz W, Vincx M (1999) Comparative study of the nematode communities on the southeastern Weddell Sea shelf and slope (Antartica). Mar Ecol Prog Ser 181:237–256Google Scholar
  72. Vanhove S, Vermeeren H, Vanreusel A (2004) Meiofauna towards the South Sandwich Trench (750–6300 m), focus on nematodes. Deep Sea Res Part II 51(14–16):1665–1687CrossRefGoogle Scholar
  73. Vanreusel A, Clough L, Jacobsen K, Ambrose W, Jutamas J, Ryheul V, Herman R, Vincx M (2000) Meiobenthos of the central Arctic Ocean with special emphasis on the nematode community structure. Deep Sea Res Part I 47:1855–1879CrossRefGoogle Scholar
  74. Vincx M, Bett BJ, Dinet A, Ferrero T, Gooday AJ, Lambshead PJD, Pfannkuche O, Soltwedel T, Vanreusel A (1994) Meiobenthos of the deep Northeast Atlantic. Adv Mar Biol 30:2–88Google Scholar
  75. Waniek JJ, Holliday NP, Davidson R, Brown L, Henson SA (2005) Freshwater control of onset and species composition of Greenland shelf spring bloom. Mar Ecol Prog Ser 288:45–57Google Scholar
  76. Warwick RM, Platt HM, Somerfield PJ (1998) Freeliving marine nematodes: Part III. Monhysterids. Synopses of the British Fauna (new series), vol 53. Field Studies Council, Shrewsbury, pp 296Google Scholar
  77. Wieser W (1953) Beziehungen zwischen Mundohöhlengstalt, Ernährungsweise und Vorkommen bei freilebenden Marinen Nematoden. Ark Zool 2:439–484Google Scholar
  78. Witte U, Aberle N, Sand M, Wenzhöfer F (2003) Rapid response of deep-sea benthic community to POM enrichment: an in situ experimental study. Mar Ecol Prog Ser 251:27–36Google Scholar
  79. Woodgate RA, Fahrbach E, Rohardt G (1999) Transports and structure of the East Greenland Current at 75N from moored current meters. J Geophys Res 104:18059–18072CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Deep-Sea Research GroupAlfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations