Skip to main content

Advertisement

Log in

Daphnia growth rates in arctic ponds: limitation by nutrients or carbon?

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Arctic organisms with annual life cycles experience a strong selective pressure to fulfill their life cycle at low temperatures within a short seasonal window. Yet, apart from low temperature, the factors that constrain or promote growth rates in high arctic systems are still poorly understood. A substantial part of the freshwater systems in the arctic consist of shallow, fish-free ponds with the crustacean Daphnia as the key grazer. This grazer has high demands for phosphorus (P) for RNA-synthesis and subsequently protein synthesis for growth. In this study, we compared growth of juvenile Daphnia that were fed seston from two high-Arctic (79°N) ponds on Svalbard in 2004, which differed strongly in P-content and C:P-ratios. In both ponds, Daphnia growth was limited by food quantity (carbon) rather than by P or N. The study also suggests that in absence of predators, infection level of epibionts might be an important factor regulating growth rate and population development of Daphnia growth in these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen YC, Destasio BT, Ramcharan CW (1993) Individual and population-level consequences of an algal epibiont on Daphnia. Limnol Oceanogr 38:592–601

    Article  Google Scholar 

  • Bertilsson S, Hansson LA, Graneli W, Philibert A (2003) Size-selective predation on pelagic microorganisms in Arctic freshwaters. J Plankton Res 25:621–631

    Article  Google Scholar 

  • Brett MT, Muller-Navarra DC (1997) The role of highly unsaturated fatty acids in aquatic food web processes. Freshw Biol 38:483–499

    Article  CAS  Google Scholar 

  • DeMott WR, Tessier AJ (2002) Stoichiometric constraints vs. algal defenses: testing mechanisms of zooplankton food limitation. Ecology 83:3426–3433

    Google Scholar 

  • DeMott WR, Pape BJ, Tessier AJ (2004) Patterns and sources of variation in Daphnia phosphorus content in nature. Aquat Ecol 38:433–440

    Article  CAS  Google Scholar 

  • Dobberfuhl DR, Elser JJ (2000) Elemental stoichiometry of lower food web components in arctic and temperate lakes. J Plankton Res 22:1341–1354

    Article  CAS  Google Scholar 

  • Dufresne F, Hebert DN (1998) Temperature-related differences in life-history characteristics between diploid and polyploid clones of the Daphnia pulex complex. Ecoscience 5:433–437

    Google Scholar 

  • Ellis-Evans JC, Galchenko V, Laybourn-Parry J, Mylnikov AP, Petz W (2001) Environmental characteristics and microbial plankton activity of freshwater environments at Kongsfjorden, Spitsbergen (Svalbard). Arch Hydrobiol 152:609–632

    CAS  Google Scholar 

  • Elser JJ, O’Brien WJ, Dobberfuhl DR, Dowling TE (2000) The evolution of ecosystem processes: growth rate and elemental stoichiometry of a key herbivore in temperate and arctic habitats. J Evol Biol 13:845–853

    Article  Google Scholar 

  • Elser JJ, Hayakawa K, Urabe J (2001) Nutrient limitation reduces food quality for zooplankton: Daphnia response to seston phosphorus enrichment. Ecology 82:898–903

    Article  Google Scholar 

  • Elser JJ, Frost P, Kyle M, Urabe J, Andersen T (2002) Effects of light and nutrients on plankton stoichiometry and biomass in a P-limited lake. Hydrobiologia 481:101–112

    Article  Google Scholar 

  • Green J (1974) Parasites and epibionts of Cladocera. Trans Zool Soc Lond 32:417–515

    Article  Google Scholar 

  • Guillard RRL, Lorenzen CJ (1972) Yellow–green algae with chlorophyllide c. J Phycol 8:10–14

    Article  CAS  Google Scholar 

  • Henebry MS, Ridgeway BT (1979) Epizoic ciliated protozoa of planktonic copepods and cladocerans and their possible use as indicators of organic-water pollution. Trans Am Microsc Soc 98:495–508

    Article  Google Scholar 

  • Herman SS, Mihursky JA (1964) Infestation of copepods Acartia tonsa with stalked ciliate Zoothamnium. Science 146:543

    Article  PubMed  CAS  Google Scholar 

  • Hessen DO, Leu E (2006) Trophic transfer and trophic modification of fatty acids in arctic lakes. Freshw Biol (in press)

  • Hessen DO, Blomqvist P, Dahl-Hansen G, Drakare S, Lindström E (2004) Production and food web interactions of Arctic freshwater plankton and responses on increased DOC. Arch Hydrobiol 159:289–307

    Article  Google Scholar 

  • Hobbie JE, Peterson BJ, Bettez N, Deegan L, O’Brien WJ, Kling GW, Kipphut GW, Bowden WB, Hershey AE (1999) Impact of global change on the biogeochemistry and ecology of an Arctic freshwater system. Polar Res 18:207–214

    Google Scholar 

  • Kilham SS, Kreeger DA, Lynn SG, Goulden CE, Herrera (1998) COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia 377:147–159

    Article  CAS  Google Scholar 

  • Mulderij G, Van Donk E, Roelofs JGM (2003) Differential sensitivity of green algae to allelopathic substances from Chara. Hydrobiologia 491:261–271

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • NEN (1981) Water-Spectrophotometric determination of chlorophyll-a content. 1981. Delft, Netherlands Institute for Standardization. NEN. 6520

  • O’Brien WJ, Barfield M, Bettez ND, Gettel GM, Hershey AE, McDonald ME, Miller MC, Mooers H, Pastor J, Richards C, Schuldt J (2004) Physical, chemical, and biotic effects on arctic zooplankton communities and diversity. Limnol Oceanogr 49:1250–1261

    Article  CAS  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437

    Article  CAS  PubMed  Google Scholar 

  • Peters RH, Downing JA (1984) Empirical analysis of zooplankton filtering and feeding rates. Limnol Oceanogr 29:763–784

    Google Scholar 

  • Rothhaupt KO (1995) Algal nutrient limitation affects rotifer growth rate but not ingestion rate. Limnol Oceanogr 40:1201–1208

    CAS  Google Scholar 

  • Rouse WR, Douglas MSV, Hecky RE, Hershey AE, Kling GW, Lesack L, Marsh P, McDonald M, Nicholson BJ, Roulet NT, Smol JP (1997) Effects of climate change on the freshwaters of arctic and subarctic North America. Hydrol Process 11:873–902

    Article  Google Scholar 

  • Salonen K (1979) A versatile method for the rapid and accurate determination of carbon by high temperature combustion. Limnol Oceanogr 24:177–183

    CAS  Google Scholar 

  • Sterner RW (1997) Modelling interactions of food quality and quantity in homeostatic consumers. Freshw Biol 38:473–481

    Article  Google Scholar 

  • Sterner RW, Hessen DO (1994) Algal nutrient limitation and the nutrition of aquatic herbivores. Annu Rev Ecol Syst 25:1–29

    Article  Google Scholar 

  • Stross RG, Miller MC, Daley RJ (1980) Zooplankton. In: Hobbie JE (ed) Limnology of tundra ponds, Barrow, Alaska, Chap 6. Dowden, Hutchinson and Ross, Stroudsburg, pp 251–296

  • Urabe J, Sterner RW (1996) Regulation of herbivore growth by the balance of light and nutrients. Proc Natl Acad Sci USA 93:8465–8469

    Article  CAS  PubMed  Google Scholar 

  • Urabe J, Clasen J, Sterner RW (1997) Phosphorus limitation of Daphnia growth: is it real? Limnol Oceanogr 42:1436–1443

    Article  CAS  Google Scholar 

  • Van Donk E, Lürling M, Hessen DO, Lokhorst GM (1997) Altered cell wall morphology in nutrient-deficient phytoplankton and its impact on grazers. Limnol Oceanogr 42:357–364

    Google Scholar 

  • Van Donk E, Faafeng BA, De Lange HJ, Hessen DO (2001) Differential sensitivity to natural ultraviolet radiation among phytoplankton species in Arctic lakes (Spitsbergen, Norway). Plant Ecol 154:249–259

    Article  Google Scholar 

  • Van Geest GJ, Hessen DO, Spierenburg P, Dahl-Hansen G, Christensen G, Faerovig PJ, Van Donk E (2006) Effects of nutrient enrichment on food webs in shallow arctic ponds (submitted)

  • Veldhuis MJW, Cucci TL, Sieracki ME (1997) Cellular DNA content of marine phytoplankton using two new fluorochromes: taxonomic and ecological implications. J Phycol 33:527–541

    Article  CAS  Google Scholar 

  • Weider LJ, Hobæk A (2003) Glacial refugia, haplotype distributions, and clonal richness of the Daphnia pulex complex in arctic Canada. Mol Ecol 12:463–473

    Article  CAS  PubMed  Google Scholar 

  • Willey RL, Cantrell PA, Threlkeld ST (1990) Epibiotic euglenoid flagellates increase the susceptibility of some zooplankton to fish predation. Limnol Oceanogr 35:952–959

    Article  Google Scholar 

  • Woods HA, Makino W, Cotner JB, Hobbie SE, Harrison JF, Acharya K, Elser JJ (2003) Temperature and the chemical composition of poikilothermic organisms. Funct Ecol 17:237–245

    Article  Google Scholar 

  • Xu ZK, Burns CW (1991) Effects of the epizoic ciliate, Epistylis daphniae, on growth, reproduction and mortality of Boeckella triarticulata (Thomson) (Copepoda, Calanoida). Hydrobiologia 209:183–189

    Article  Google Scholar 

  • Yurista PM (1999) Temperature-dependent energy budget of an arctic cladoceran, Daphnia middendorffiana. Freshw Biol 42:21–34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Van Geest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Geest, G.J., Spierenburg, P., Van Donk, E. et al. Daphnia growth rates in arctic ponds: limitation by nutrients or carbon?. Polar Biol 30, 235–242 (2007). https://doi.org/10.1007/s00300-006-0177-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-006-0177-7

Keywords

Navigation