Skip to main content
Log in

Isolation of denitrifying bacteria from hydrocarbon-contaminated Antarctic soil

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

In this study, we report the isolation of denitrifiers from hydrocarbon-contaminated Antarctic soils. Seventy-two isolates were obtained from soils that had received a fertilizer treatment to stimulate hydrocarbon degradation. All isolates, except one, belonged to the genus Pseudomonas. The one exception was a member of the Microbacteriaceae, which was also, coincidentally, the only isolate negative for the nirS gene. The diversity of the 16S rRNA and nosZ genes was assessed by denaturing gradient gel electrophoresis and sequencing. There was a slight correlation between the 16S rRNA and nosZ operational taxonomic units. Surprisingly, many isolates contained nosZ on plasmids and, to the best of our knowledge, this is the first report of nosZ being extra-chromosomally present in Pseudomonas spp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson KH (2003) Reproduction and metabolism at −10 degrees C of bacteria isolated from Siberian permafrost. Environ Microbiol 5:321–326

    Article  PubMed  Google Scholar 

  • Barak Y, Yarmus M, Shapira R, van Rijn J (2002) Nitrite reduction in Paracoccus sp. is affected by a novel plasmid pYR1. FEMS Microbiol Lett 208:111–116

    Article  PubMed  CAS  Google Scholar 

  • Bonin PC, Michotey VD, Mouzdahir A, Rontani JF (2002) Anaerobic biodegradation of squalene: using DGGE to monitor the isolation of denitrifying bacteria taken from enrichment cultures. FEMS Microbiol Ecol 42:37–49

    Article  CAS  PubMed  Google Scholar 

  • Braker G, Fesefeldt A, Witzel KP (1998) Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol 64:3769–3775

    PubMed  CAS  Google Scholar 

  • Chan YK, McCormick WA (2004) Experimental evidence for plasmid-borne nor-nir genes in Sinorhizobium meliloti JJ1c10. Can J Microbiol 50:657–667

    Article  PubMed  CAS  Google Scholar 

  • Chan YK, Wheatcroft R (1993) Detection of a nitrous-oxide reductase structural gene in Rhizobium-Meliloti strains and its location on the nod megaplasmid of Jj1c10 and Su47. J Bacteriol 175:19–26

    PubMed  CAS  Google Scholar 

  • Cheneby D, Philippot L, Hartmann A, Henault C, Germon JC (2000) 16S rDNA analysis for characterization of denitrifying bacteria isolated from three agricultural soils. FEMS Microbiol Ecol 34:121–128

    PubMed  CAS  Google Scholar 

  • Cho JC, Tiedje JM (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 66:5448–5456

    Article  PubMed  CAS  Google Scholar 

  • Christner BC, Kvitko BH, Reeve JN (2003) Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183

    PubMed  CAS  Google Scholar 

  • Deprez PP, Arens M, Locher H (1999) Identification and assessment of contaminated sites at Casey Station, Wilkes Land, Antarctica. Polar Record 35:299–316

    Article  Google Scholar 

  • Ehrenreich P, Behrends A, Harder J, Widdel F (2000) Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Arch Microbiol 173:58–64

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP (phylogenetic inference program package) version 3.2. Cladistic 5:164–166

    Google Scholar 

  • Ferguson SH, Woinarski AZ, Snape I, Morris CE, Revill AT (2004) A field trial of in situ chemical oxidation to remediate long-term diesel contaminated Antarctic soil Cold Regions. Sci Technol 40:47–60

    Google Scholar 

  • Ferris MJ, Muyzer G, Ward BB (1996) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62:340–346

    PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    PubMed  CAS  Google Scholar 

  • Jungst A, Braun C, Zumft WG (1991) Close linkage in Pseudomonas stutzeri of the structural genes for respiratory nitrite reductase and nitrous oxide reductase, and other essential genes for denitrification. Mol Gen Genet 225:241–248

    Article  PubMed  CAS  Google Scholar 

  • Kloos K, Mergel A, Rösch C, Bothe H (2001) Denitrification within the genus Azospirillum and other associative bacteria. Aus J Plant Physiol 28:991–998

    Google Scholar 

  • Osborn AM, Bruce KD, Strike P, Ritchie DA (1997) Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol Rev 19:239–262

    Article  PubMed  CAS  Google Scholar 

  • Overeas L, Forney L, Daae FL, Torsvik (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63:3367–3373

    Google Scholar 

  • Philippot L, Mirleau P, Mazurier S, Siblot S, Hartmann A, Lemanceau P, Germon JC (2001) Characterization and transcriptional analysis of Pseudomonas fluorescens denitrifying clusters containing the nar, nir, nor and nos genes. Biochim Biophys Acta 157:436–440

    Google Scholar 

  • Poland JS, Riddle MJ, Zeeb BA (2003) Contaminants in the Arctic and the Antarctic: a comparison of sources, impacts, and remediation options. Polar Record 39:369–383

    Article  Google Scholar 

  • Powell SM, Ferguson SH, Snape I, Siciliano SD (2006) Fertilization stimulates anaerobic fuel degradation of Antarctic soils by denitrifying microorganisms. Environ Sci Technol 40:2011–2017

    Article  PubMed  CAS  Google Scholar 

  • Rosch C, Mergel A, Bothe H (2002) Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol 68:3818–3829

    Article  PubMed  CAS  Google Scholar 

  • Schwartz E, Henne A, Cramm R, Eitinger T, Friedrich B, Gottschalk G (2003) Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H2-based lithoautotrophy and anaerobiosis. J Mol Biol 332:369–383

    Article  PubMed  CAS  Google Scholar 

  • Schwintner C, Sabaty M, Berna B, Cahors S, Richaud P (1998) Plasmid content and localization of the genes encoding the denitrification enzymes in two strains of Rhodobacter sphaeroides. FEMS Microbiol Lett 165:313–321

    Article  PubMed  CAS  Google Scholar 

  • Siciliano SD, Roy R, Greer CW (2000) Reduction in denitrification activity in field soils exposed to long term contamination by 2,4,6-trinitrotoluene (TNT). FEMS Microbiol Ecol 32:61–68

    Article  PubMed  CAS  Google Scholar 

  • Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Ouellette D, Roy R, Whyte LG, Banks MK, Schwab P, Lee K, Greer CW (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475

    Article  PubMed  CAS  Google Scholar 

  • Van Trappen S, Mergaert J, Van Eygen S, Dawyndt P, Cnockaert MC, Swings J (2002) Diversity of 746 heterotrophic bacteria isolated from microbial mats from ten Antarctic lakes. Syst Apppl Microbiol 25:603–610

    Article  Google Scholar 

  • Vollack KU, Xie J, Hartig E, Romling U, Zumft WG (1998) Localization of denitrification genes on the chromosomal map of Pseudomonas aeruginosa. Microbiology 144:441–448

    Article  PubMed  CAS  Google Scholar 

  • Ward BB (1995) Diversity of culturable denitrifying bacteria––limits of rDNA RFLP analysis and probes for the functional gene, nitrite reductase. Arch Microbiol 163:167–175

    CAS  Google Scholar 

  • Ward BB, Priscu JC (1997) Detection and characterization of denitrifying bacteria from a permanently ice-covered Antarctic lake. Hydrobiologia 347:57–68

    Article  CAS  Google Scholar 

  • Yu Z, Stewart GR, Mohn WW (2000) Apparent contradiction: psychrotolerant bacteria from hydrocarbon-contaminated Arctic tundra soils that degrade diterpenoids synthesized by trees. Appl Environ Microbiol 66:5148–5154

    Article  PubMed  CAS  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank I. Snape and S.H. Ferguson at the Australian Antarctic Division for providing the bioremediation field trial soil samples. This work was supported through an Australian Antarctic Science grant 1163 and a National Engineering and Research Council of Canada Strategic Project Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane M. Powell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Powell, S.M., Ma, W.K. & Siciliano, S.D. Isolation of denitrifying bacteria from hydrocarbon-contaminated Antarctic soil. Polar Biol 30, 69–74 (2006). https://doi.org/10.1007/s00300-006-0161-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-006-0161-2

Keywords

Navigation