Polar Biology

, Volume 28, Issue 7, pp 523–527 | Cite as

Temperature effects on summer growth rates in the Antarctic scallop, Adamussium colbecki

  • Olaf Heilmayer
  • Cornelia Honnen
  • Ute Jacob
  • Mariachiara Chiantore
  • Riccardo Cattaneo-Vietti
  • Thomas Brey
Original Paper

Abstract

Annual growth rates of Antarctic marine organisms are low compared to their relatives from warmer waters. Previous studies hypothesise that high food availability during austral spring–summer may enable Antarctic invertebrates to attain comparatively high short-term growth rates despite the low temperature. Neither a temperature-growth experiment with juvenile Adamussium colbecki (Smith 1902) nor the comparison of A. colbecki summer growth rates with an empirical scallop specific growth-to-temperature relationship could confirm this hypothesis. Hence, summer growth rates of young, immature A. colbecki are strongly affected by temperature, i.e. no “uncoupling” from temperature.

Keywords

Adamussium colbecki Antarctic scallop Growth Growth rate Temperature 

References

  1. Ahn IY, Surh J, Park YG, Kwon H, Choi KS, Kang SH, Choi HJ, Kim KW, Chung H (2003) Growth and seasonal energetics of the Antarctic bivalve Laternula elliptica from King George Island, Antarctica. Mar Ecol Prog Ser 257:99–110Google Scholar
  2. Arendt J (1997) Adaptive intrinsic growth rates: an integration across taxa. Q Rev Biol 72:149–177CrossRefGoogle Scholar
  3. Arntz WE, Brey T, Gallardo VA (1994) Antarctic zoobenthos. Oceanogr Mar Biol Ann Rev 32:241–304Google Scholar
  4. Barnes DKA (1995) Seasonal and annual growth in erect species of Antarctic bryozoans. J Exp Mar Biol Ecol 188:181–198CrossRefGoogle Scholar
  5. Berkman PA (1990) The population biology of the Antarctic scallop, Adamussium colbecki (Smith 1902) at New Harbor, Ross Sea. In: Kerry KR, Hempel G (eds) Antarctic ecosystems: ecological change and conservation. Springer, Berlin Heidelberg, New York, pp 281–288Google Scholar
  6. Brey T, Clarke A (1993) Population dynamics of marine benthic invertebrates in Antarctic and subantarctic environments: are there unique adaptations. Ant Sci 5:253–266Google Scholar
  7. Brey T, Hain S (1992) Growth, reproduction and production of Lissarca notorcadensis (Bivalvia: Philobryidae) in the Weddell Sea, Antarctica. Mar Ecol Prog Ser 82:219–226Google Scholar
  8. Brockington S, Clarke A, Chapman ALG (2001) Seasonality of feeding and nutritional status during the austral winter in the Antarctic sea urchin Sterechinus neumayeri. Mar Biol 139:127–138CrossRefGoogle Scholar
  9. Cattaneo-Vietti R, Chiantore M, Albertelli G (1997) The population structure and ecology of the Antarctic scallop Adamussium colbecki (Smith, 1902) at Terra Nova Bay (Ross Sea, Antarctica). Sci Mar 61 (Suppl 2):15–24Google Scholar
  10. Chandler RA, Parsons GJ, Dadswell MJ (1989) Upper and northern Bay of Fundy scallop surveys, 1986–1987. Can Tech Rep Fish Aquat Sci 1665:37Google Scholar
  11. Chauvaud L, Strand O (1999) Growth traits in three populations of Pecten maximus. Book of Abstracts: 12th international pectinid workshop, pp 166–167Google Scholar
  12. Chauvaud L, Thouzeau G, Paulet YM (1998) Effects of environmental factors on the daily growth rate of Pecten maximus juveniles in the Bay of Brest (France). J Exp Mar Biol Ecol 227:83–111CrossRefGoogle Scholar
  13. Chiantore M, Cattaneo-Vietti R, Albertelli G (2000) The population structure and ecology of the Antarctic Scallop Adamussium colbecki in Terra Nova Bay. In: Faranda FM, Guglielmo L, Ianora A (eds) Ross Sea Ecology: Italiantartide Expeditions (1987–1995). Springer, Berlin Heidelberg New York, pp 563–573Google Scholar
  14. Clarke A (1988) Seasonality in the antarctic marine environment. Comp Biochem Physiol 90B:461–473Google Scholar
  15. Clarke A (1998) Temperature and energetics: an introduction to cold ocean physiology. In: Pörtner HO, Playle R (eds) Cold ocean physiology. University Press, Cambridge, pp 3–30Google Scholar
  16. Clarke A (2003) Costs and consequences of evolutionary temperature adaptation. Trends Ecol Evol 18:573–581CrossRefGoogle Scholar
  17. Clarke A, Prothero-Thomas E, Beaumont JC, Chapman AL, Brey T (2004) Growth in the limpet Nacella concinna from contrasting sites in Antarctica. Polar Biol 28:62–71Google Scholar
  18. Conover DG, Schultz ET (1995) Phenotypic similarity and the evolutionary significance of countergradient variation. Trends Ecol Evol 10:248–252CrossRefGoogle Scholar
  19. Dadswell MJ (1989) Potential for giant scallop (Placopecten magellanicus) aquaculture in Atlantic Canada. Aquacult Assoc Can Bull 89:19–22Google Scholar
  20. Dadswell MJ, Parsons GJ (1991) Potential for aquaculture of sea scallop, Placopecten magellanicus (Gmelin, 1791) in the Canadian Maritimes using naturally produced spat. In: Shumway SE, Sandifer PA (eds) An international compendium of scallop biology and culture World aquaculture workshops. The World Aquaculture Society, Baton Rouge LA, pp 300–307Google Scholar
  21. Dahm C (1996) Ökologie und Populationsdynamik antarktischer Ophiuroiden (Echinodermata). Ber Polarforsch 194:1–289Google Scholar
  22. Harrington RJ (1987) Skeletal growth histories of Protothaca staminea (Conrad) and Protothaca grata (Say) throughout their geographic ranges, northeastern Pacific. Veliger 30:148–158Google Scholar
  23. Heilmayer O, Brey T, Chiantore M, Cattaneo-Vietti R, Arntz WE (2003) Age and productivity of the Antarctic scallop, Adamussium colbecki, in Terra Nova Bay (Ross Sea, Antarctica). J Exp Mar Biol Ecol 288:239–256CrossRefGoogle Scholar
  24. Heilmayer O, Brey T, Pörtner HO (2004) Growth efficiency and temperature in scallops: a comparative analysis of species adapted to different temperatures. Funct Ecol 18:641–647CrossRefGoogle Scholar
  25. Kaehler S, McQuaid CD (1999) Use of the fluorochrome calcein as an in situ growth marker in the brown mussel Perna perna. Mar Biol 133:455–460CrossRefGoogle Scholar
  26. Levinton JS, Monahan RK (1983) The latitudinal compensation hypothesis: growth data and a model of latitudinal growth differentiation based upon energy budgets. II. Intraspecific comparisons between subspecies of Ophryotrocha puerilis (Polychaeta: Dorvilleidae). Biol Bull 165:699–707Google Scholar
  27. Lonsdale DJ, Levinton JS (1985) Latitudinal differentiation in copepod growth: an adaptation to temperature. Ecology 66:1397–1407Google Scholar
  28. MacDonald BA, Thompson RJ (1988) Intraspecific variation in growth and reproduction in latitudinally differentiated populations of the giant scallop Placopecten magellanicus (Gmelin). Biol Bull 175:361–371Google Scholar
  29. Maru K (1985) Ecological studies on the seed production of scallop, Patinopecten yessoensis (Jay). Sci Rep Hokk Fish Exp Stud 27:1–55Google Scholar
  30. Mohler JW (1997) Immersion of larval Atlantic salmon in calcein solutions to induce a non-lethally detectable mark. N Am J Fish Mgmt 17:751–756CrossRefGoogle Scholar
  31. Moran AL (2000) Calcein as a marker in experimental studies newly-hatched gastropods. Mar Biol 137:893–898CrossRefGoogle Scholar
  32. Nolan CP, Clarke A (1993) Growth in the bivalve Yoldia eightsi at Signy Island, Antarctica, determined from internal shell increments and calcium-45 incorporation. Mar Biol 117:243–250CrossRefGoogle Scholar
  33. Parsons KE (1997) Contrasting patterns of heritable geographic variation in shell morphology and growth potential in the marine gastropod Bembicium vittatum: evidence from field experiments. Evolution 51:784–796Google Scholar
  34. Parsons GJ, Robinson SMC, Roff JC, Dadswell MJ (1993) Daily growth rates as indicated by valve ridges in postlarval giant scallop (Placopecten magellanicus) (Bivalvia: Pectinidae). Can J Fish Aquat Sci 50:456–464Google Scholar
  35. Peck LS (2002) Ecophysiology of Antarctic marine ectotherms: limits to life. Polar Biol 25:31–40CrossRefGoogle Scholar
  36. Peck LS, Colman JG, Murray AWA (2000) Growth and tissue mass cycles in the infaunal bivalve Yoldia eightsi at Signy Island, Antarctica. Polar Biol 23:420–428CrossRefGoogle Scholar
  37. Ruiz-Verdugo CA, Cáceres-Martinez C (1991) Experimental spat collection of scallops Argopecten circularis (Sowerby, 1835), and Pecten vogdesi (Arnold, 1906) on a filament substrate in Falsa Bay, B.C.S. Mexico. In: Shumway SE, Sandifer PA (eds) An international compendium of scallop biology and culture World aquaculture workshops. The World of Aquaculture Society, Baton Rouge, pp 21–27Google Scholar
  38. Schultz ET, Lankford TE, Conover DO (2002) The covariance of routine and compensatory juvenile growth rates over a seasonality gradient in a coastal fish. Oecologia 133:501–509CrossRefGoogle Scholar
  39. Sukhotin AA, Abele D, Pörtner HO (2002) Growth, metabolism and lipid peroxidation in Mytilus edulis: age and size effects. Mar Ecol Prog Ser 226:223–234Google Scholar
  40. Thorarinsdôttir GG (1994) The Iceland scallop, Chlamys islandica (O.F. Müller), in Breidafjordur, west Iceland. III. Growth in suspended culture. Aquacult 120:295–303Google Scholar
  41. Thouzeau G, Robert G, Smith SJ (1991) Spatial variability in distribution and growth of juvenile and adult sea scallop Placopecten magellanicus (Gmelin) on eastern Georges Bank (Northwest Atlantic). Mar Ecol Prog Ser 74:205–218Google Scholar
  42. Yoshida T, Toda T, Hirano Y, Matsuda T, Kawaguchi S (2004) Effect of temperature on embryo development time and hatching success of the Antarctic krill Euphausia superba dana in the laboratory. Mar Fresh Behav Physiol 37:137–145CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Olaf Heilmayer
    • 1
    • 2
  • Cornelia Honnen
    • 3
  • Ute Jacob
    • 1
  • Mariachiara Chiantore
    • 4
  • Riccardo Cattaneo-Vietti
    • 4
  • Thomas Brey
    • 1
  1. 1.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  2. 2.Department of Biological SciencesFlorida Atlantic UniversityBoca RatonUSA
  3. 3.Gymnasium WesermündeBremerhavenGermany
  4. 4.DIP.TE.RIS Dipartimento per lo Studio del Territorio e delle sue RisorseUniversità di Genova, Viale Benedetto XVGenovaItaly

Personalised recommendations