Skip to main content

Recent research on Arctic benthos: common notions need to be revised

Abstract

Increased public awareness of the global significance of polar regions and opening of the Russian Arctic to foreign researchers have led to a pronounced intensification of benthic research in Arctic seas. The wealth of information gathered in these efforts has markedly enhanced our knowledge on the Arctic benthos. While some scientific concepts have been corroborated by the novel findings (e.g., low endemism and high faunistic affinity to northern Atlantic assemblages), other common notions need to be revised, particularly with regard to the often-cited differences between Arctic seas and the Southern Ocean. It has been demonstrated that benthos assemblages vary broadly in diversity between Arctic regions and that, hence, the idea of a consistently poor Arctic benthos—being in stark contrast to the rich Antarctic bottom fauna—is an undue overgeneralization. In terms of biogeographic diversity, both Arctic and Antarctic waters seem to be characterized by intermediate species richness. Levels of disturbance—a major ecological agent known to heavily affect benthic diversity and community structure—have been assumed to be relatively high in the Arctic but exceptionally low in the Southern Ocean. The discovery of the great role of iceberg scouring in Antarctic shelf ecosystems, which has largely been overlooked in the past, calls for a reconsideration of this notion. The novel data clearly demonstrate that there are marked differences in geographical and environmental setting, impact of fluvial run-off, pelagic production regime, strength of pelago–benthic coupling and, hence, food supply to the benthos among the various Arctic seas, impeding the large-scale generalization of local and regional findings. Field evidence points to the great significance of meso-scale features in hydrography and ice cover (marginal ice zones, polynyas, and gyres) as ‘hot spots’ of tight pelago–benthic coupling and, hence, high benthic biomass. In contrast, the importance of terrigenic organic matter discharged to the Arctic seas through fluvial run-off as an additional food source for the benthos is still under debate. Studies on the partitioning of energy flow through benthic communities strongly suggest that megafauna has to be adequately considered in overall benthic energy budgets and models of carbon cycling, particularly in Arctic shelf systems dominated by abundant echinoderm populations. Much progress has been made in the scientific exploration of the deep ice-covered Arctic Ocean. There is now evidence that it is one order of magnitude more productive than previously thought. Therefore, the significance of shelf–basin interactions, i.e., the importance of excess organic carbon exported from productive shelves to the deep ocean, is still debated and, hence, a major topic of on-going research. Another high-priority theme of current/future projects are the ecological consequences of the rapid warming in the Arctic. Higher water temperatures, increased fluvial run-off and reduced ice cover will give rise to severe ecosystem changes, propagating through all trophic levels. It is hypothesized that there would be a shift in the relative importance of marine biota in the overall carbon and energy flux, ultimately resulting in a switch from a ‘sea-ice algae–benthos’ to a ‘phytoplankton–zooplankton’ dominance.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Aagaard K, Swift JH, Carmack EC (1985) Thermohaline circulation in the Arctic Mediterranean seas. J Geophys Res 90:4833–4846

    Google Scholar 

  2. Ambrose Jr WG, Clough LM, Tilney PR, Beer L (2001) Role of echinoderms in benthic remineralization in the Chukchi Sea. Mar Biol 139:937–949

    Article  CAS  Google Scholar 

  3. Ambrose Jr WG, Renaud PE (1995) Benthic response to water column productivity patterns: evidence for benthic-pelagic coupling in the Northeast Water Polynya. J Geophys Res 100:4411–4421

    Article  Google Scholar 

  4. Anderson LG, Björk G, Holby O, Kattner G, Koltermann PK, Jones EP, Liljeblad B, Lindegren R, Rudels B, Swift JH (1994) Water masses and circulation in the Eurasian Basin: results from the Oden 91 North Pole expedition. J Geophys Res 99:3273–3283

    Article  Google Scholar 

  5. Andreassen I, Nöthig E-M, Wassmann P (1996) Vertical particle flux on the shelf off northern Spitsbergen, Norway. Mar Ecol Prog Ser 137:215–228

    Google Scholar 

  6. Anisimova NA (1989) Distributional patterns of echinoderms in the Eurasian sector of the Arctic Ocean. In: Herman Y (ed) The Arctic seas. Van Nostrand, New York, pp 281–301

    Google Scholar 

  7. Anonymous (1991) Mission Statement and Core Programme for the International Arctic Polynya Programme. Joint Oceanographic Institutions, Washington, D.C., 10 pp

  8. Arctic Climate Impact Assessment (ACIA) (2004) Impacts of a warming Arctic. Cambridge University Press, Cambridge, 139 pp

  9. Arntz WE (1995) Antarktisches Benthos: Mythen und Daten. In: Hempel I, Hempel G (eds) Biologie der Polarmeere. Gustav Fischer, Jena, pp 230–239

    Google Scholar 

  10. Arntz WE, Brey T, Gallardo VA (1994) Antarctic zoobenthos. Oceanogr Mar Biol Annu Rev 32:241–304

    Google Scholar 

  11. Arntz WE, Gutt J, Klages M (1997) Antarctic marine biodiversity: an overview. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 3–14

    Google Scholar 

  12. Aronson RB (1989) Brittlestar beds: low-predation anachronisms in the British Isles. Ecology 70:856–865

    Google Scholar 

  13. Ashjian CJ, Smith SL, Bignami F, Hopkins T, Lane PVZ (1997) Distribution of zooplankton in the Northeast Water Polynya during summer 1993. J Mar Syst 10:279–298

    Article  Google Scholar 

  14. Ashjian CJ, Smith SL, Lane PVZ (1995) The Northeast Water Polynya during summer 1992: distribution and aspects of secondary production of copepods. J Geophys Res 100:4371–4388

    Article  Google Scholar 

  15. Bauerfeind E, Bodungen Bv, Arndt K, Koeve W (1994) Particle flux and composition of sedimenting matter in the Greenland Sea. J Mar Syst 5:411–423

    Article  Google Scholar 

  16. Biscaye PE, Flagg CN, Falkowski PG (1994) The shelf edge exchange processes experiment, SEEP-II: an introduction to hypotheses, results and conclusions. Deep-Sea Res II 41:231–252

    Article  CAS  Google Scholar 

  17. Blake JA, Diaz RJ (1994) Input, accumulation and cycling of materials on the continental slope off Cape Hatteras: an introduction. Deep-Sea Res II 41:707–710

    Article  Google Scholar 

  18. Bleil U, Thiede J (1990) The geological history of Cenozoic polar oceans: Arctic versus Antarctic—an introduction. In: Bleil U, Thiede J (eds) Geological history of Cenozoic polar oceans: Arctic versus Antarctic. Kluwer, Dordrecht, pp 1–8

    Google Scholar 

  19. Bluhm BA, MacDonald IR, Debenham C, Iken K (2005) Macro- and megabenthic communities in the high Arctic Canada Basin: initial findings. Polar Biol 28:218–231

    Article  Google Scholar 

  20. Bluhm BA, Piepenburg D, Juterzenka Kv (1998) Distribution, standing stock, growth, mortality and production of Strongylocentrotus pallidus (Echinodermata: Echinoidea) in the northern Barents Sea. Polar Biol 20:325–334

    Article  Google Scholar 

  21. Boetius A, Damm E (1998) Benthic oxygen uptake, hydrolytical potentials and microbial biomass at the Arctic continental slope. Deep-Sea Res I 45:239–275

    Article  Google Scholar 

  22. Bourke RH, Newton JL, Paquette RG, Tunnicliffe MD (1987) Circulation and water masses of the East Greenland Shelf. J Geophys Res 92:6729–6740

    Article  Google Scholar 

  23. Brandt A (1995) Peracarid fauna (Crustacea, Malacostraca) of the Northeast Water Polynya off Greenland: documenting close benthic-pelagic coupling in the Westwind Trough. Mar Ecol Prog Ser 121:39–51

    Google Scholar 

  24. Brey T, Clarke A (1993) Population dynamics of marine benthic invertebrates in Antarctic and subantarctic environments: are there unique adaptations? Antarct Sci 5:253–266

    Google Scholar 

  25. Buscail R, Pocklington R, Daumas R, Guidi L (1990) Fluxes and budget of organic matter in the benthic boundary layer over the northwestern Mediterranean margin. Cont Shelf Res 10:1089–1122

    Article  Google Scholar 

  26. Carey Jr AG (1991) Ecology of North American Arctic continental shelf benthos: a review. Cont Shelf Res 11:865–883

    Article  Google Scholar 

  27. Carney RS, Haedrich RL, Rowe GT (1983) Zonation of fauna in the deep sea. In: Rowe GT (ed) The sea, vol. 8: Deep-sea biology. Wiley, New York, pp 371–398

  28. Carroll MK, Carroll J (2003) The Arctic seas. In: Black KD, Shimmield GB (eds) Biogeochemistry of Marine Systems. Blackwell, Sheffield, pp 127–156

    Google Scholar 

  29. Cauwet G, Sidorov I (1996) The biogeochemistry of Lena River: organic carbon and nutrients distribution. Mar Chem 53:211–227

    Article  CAS  Google Scholar 

  30. Cavalieri DJ, Gloersen P, Parkinson CL, Comiso JC, Zwally HJ (1997) Observed hemispheric asymmetry in global sea ice changes. Science 278:1104–1106

    Article  CAS  Google Scholar 

  31. Christensen JP (1989) Sulfate reduction and carbon oxidation rates in continental shelf sediments, an examination of off-shelf carbon transport. Cont Shelf Res 9:223–246

    Article  Google Scholar 

  32. Christensen JP (2000) A relationship between deep-sea benthic oxygen demand and oceanic primary productivity. Oceanologica Acta 23:65–82

    Article  CAS  Google Scholar 

  33. Clarke A (1983) Life in cold water: the physiological ecology of polar marine ectotherms. Oceanogr Mar Biol Annu Rev 21:341–453

    Google Scholar 

  34. Clarke A (1994) Temperature and evolution: southern Ocean cooling and the Antarctic marine fauna. In: Kerry KR, Hempel G (eds) Antarctic ecosystems—ecological change and conservation. Springer, Berlin Heidelberg New York, pp 9–22

    Google Scholar 

  35. Clarke A (2003) Evolution, adaptation and diversity: global ecology in an Antarctic context. in: Huikes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vries SM, Wolff WJ (eds) Antarctic biology in a global context. Backhuys Publishers, Leiden, pp 3–17

    Google Scholar 

  36. Clarke A, Crame JA (1989) The origin of the Southern Ocean marine fauna. In: Crame JA (ed) Geological Society Special Publication, Vol. 47: Origins and evolution of the Antarctic biota. Geological Society, London, pp 253–268

  37. Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol Annu Rev 41:47–114

    Google Scholar 

  38. Clough LM, Ambrose Jr WG, Ashjian CJ, Piepenburg, D, Renaud PE, Smith SL (1997a) Meroplankton abundance in the Northeast Water Polynya: insights from oceanographic parameters and benthic abundance patterns. J Mar Syst 10:343–357

    Article  Google Scholar 

  39. Clough LM, Ambrose Jr WG, Cochran JK, Barnes C, Renaud PE, Aller RC (1997b) Infaunal density, biomass and bioturbation in the sediments of the Arctic Ocean. Deep-Sea Res 44:1683–1704

    Article  CAS  Google Scholar 

  40. Conlan KE, Lenihan HS, Kvitek RG, Oliver JS (1998) Ice scour disturbance to benthic communities in the Canadian High Arctic. Mar Ecol Prog Ser 166:1–16

    Google Scholar 

  41. Cooper LW, Grebmeier JM, Larsen IL, Egorov VG, Theodorakis C, Kelly HP, Lovvorn JR (2002) Seasonal variation in sedimentation of organic materials in the St. Lawrence Island polynya region, Bering Sea. Mar Ecol Prog Ser 226:13–26

    Google Scholar 

  42. Curtis MA (1975) The marine benthos of Arctic and sub-Arctic continental shelves. A review of regional studies and their general results. Polar Rec 17:595–626

    Article  Google Scholar 

  43. Dahm C (1996) Ökologie und Populationsdynamik antarktischer Ophiuroiden (Echinodermata). Ber Polarforsch 194:1–289

    Google Scholar 

  44. Dayton PK (1984) Processes structuring some marine communities: are they general? In: Strong DR, Simberloff D, Lawrence GA, Thistle AB (eds) Ecological communities: conceptual issues and the evidence. Princeton University Press, Princeton, pp 181–197

    Google Scholar 

  45. Dayton PK (1990) Polar benthos. In: Smith Jr WO (ed) Polar oceanography, Part B: Chemistry, biology, and geology. Academic, San Diego, pp 631–685

    Google Scholar 

  46. Dayton PK, Oliver JS (1977) Antarctic soft-bottom benthos in oligotrophic and eutrophic environments. Science 197:55–58

    PubMed  Google Scholar 

  47. Dayton PK, Tegner MJ (1984) The importance of scale in community ecology: a kelp forest example with terrestrial analogs. In: Price PW, Slobodchikoff CN, Gaud WS (eds) A new ecology: novel approaches to interactive systems. Wiley, New York, pp 457–481

    Google Scholar 

  48. Deming J, Fortier L, Fukuchi M (2002) The International North Water Polynya Study (NOW): a brief overview. Deep-Sea Res II 49:4887–4892

    Article  Google Scholar 

  49. Deubel H (2000) Struktureigenschaften und Nahrungsbedarf der Zoobenthosgemeinschaften im Bereich des Lomonssowrückens im Arktischen Ozean. Ber Polarforsch 370:1–147

    Google Scholar 

  50. Deubel H, Engel M, Fetzer I, Gagaev S, Hirche HJ, Klages M, Larionov V, Lubin P, Lubina O, Nöthig EM, Okolodkov Y, Rachor E (2003) The Kara Sea ecosystem: phytoplankton, zooplankton and benthos communities influenced by river run-off. In: Stein R, Fahl K, Fütterer DK, Galimov EM, Stepanets OV (eds) Siberian river run-off in the Kara Sea: characterisation, quantification, variability, and environmental significance. Elsevier, Amsterdam, pp 237–266

    Google Scholar 

  51. Dickson RR (1999) All change in the Arctic. Nature 397:389–391

    Article  CAS  Google Scholar 

  52. Dickson RR, Osborn TJ, Hurrell JW, Meincke J, Blindheim J, Adlandsvik B, et al (2000) The Arctic Ocean response to the North Atlantic Oscillation. J Clim 13:2671–2696

    Article  Google Scholar 

  53. Dunbar MJ (1977) The evolution of polar ecosystems. In: Llano GA (ed) Adaptations within the Antarctic ecosystems. Smithsonian Institution, Washington, pp 1063–1076

    Google Scholar 

  54. Dunton K (1992) Arctic biogeography: the paradox of the marine benthic fauna and flora. Trends Ecol Evol 7:183–189

    Article  Google Scholar 

  55. D’yakonov AM (1967) Ophiuroids of the USSR seas. Israel Program for Scientific Translations, Jerusalem, 123 pp

    Google Scholar 

  56. Fahl K, Cremer H, Erlenkeuser H, Hanssen H, Hölemann J, Kassens H, Knickmeier K, Kosobokova K, Kunz-Pirrung M, Lindemann F, Markhaseva E, Lischka S, Petryashov V, Piepenburg D, Schmid MK, Spindler M, Stein R, Tuschling K (2001) Sources and pathways of organic carbon in the modern Laptev Sea (Arctic Ocean): implications from biological, geochemical and geological data. Polarforschung 69:193–205

    Google Scholar 

  57. Feder HM, Foster NR, Jewett SC, Weingartner TJ, Baxter R (1994a) Mollusks in the Northeastern Chukchi Sea. Arctic 47: 145–163

    Google Scholar 

  58. Feder HM, Jewett CJ, Blanchard A (2005) Southeastern Chukchi Sea (Alaska) epibenthos. Polar Biol 28:402–421

    Article  Google Scholar 

  59. Feder HM, Naidu AS, Jewett SC, Hameedi JM, Johnson WR, Whitledge TE (1994b) The north-eastern Chukchi Sea: benthos-environmental interactions. Mar Ecol Prog Ser 111:171–190

    Google Scholar 

  60. Feder HM, Norton DW, Geller JB (2003) A review of apparent 20th century changes in the presence of mussels (Mytilus trossulus) and macroalgae in Arctic Alaska, and of historical and paleontological evidence used to relate mollusc distributions to climate change. Arctic 56:391–407

    Google Scholar 

  61. Gage JD, Tyler PA (1991) Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge University Press, Cambridge

    Google Scholar 

  62. George RY (1977) Dissimilar and similar trends in antarctic and arctic marine benthos. In: Dunbar MJ (ed) Polar oceans. Arctic Institute of North America, Calgary, pp 391–408

    Google Scholar 

  63. Golikov AN (1990) Explorations of the fauna of the seas 37(45): ecosystems of the New Siberian shoals and the fauna of the Laptev Sea and adjacent waters of the Arctic Ocean. Nauka, Moscow

    Google Scholar 

  64. Gosselin M, Levasseur M, Wheeler PA, Horner RA, Booth BC (1997) New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Res II 44:1623–1644

    Article  CAS  Google Scholar 

  65. Gould PJ, Forsell DJ, Lensink CJ (1982) Pelagic distribution and abundance of seabirds in the Gulf of Alaska and eastern Bering Sea. US Fish Wildlife Ser FWS/OBS-82/48, 294 pp

  66. Gradinger R (1995) Climate change and biological oceanography of the Arctic Ocean. Phil Trans R Soc Lond A 352:277–286

    Google Scholar 

  67. Gradinger R, Baumann MEM (1991) Distribution of phytoplankton communities in relation to the large-scale hydrographical regime in the Fram Strait. Mar Biol 111:311–321

    Article  Google Scholar 

  68. Graf G (1989) Benthic-pelagic coupling in a deep-sea benthic community. Nature 341:437–439

    Google Scholar 

  69. Graf G (1992) Benthic-pelagic coupling: a benthic view. Oceanogr Mar Biol Annu Rev 30:149–190

    Google Scholar 

  70. Graf G, Gerlach SA, Linke P, Queisser W, Ritzrau W, Scheltz A, Thomsen L, Witte U (1995) Benthic-pelagic coupling in the Greenland-Norwegian Sea and its effect on the geological record. Geol Rundschau 84:49–58

    Article  Google Scholar 

  71. Grassle JF (1986) The ecology of deep-sea hydrothermal vent communities. Adv Mar Biol. 23:301–362

    Google Scholar 

  72. Gray JS (1981) The ecology of marine sediments. Cambridge University Press, New York, 185 pp

    Google Scholar 

  73. Gray JS (2001) Antarctic marine benthos biodiversity in a world-wide latitudinal context. Polar Biol 24:633–641

    Article  Google Scholar 

  74. Grebmeier JM (1993) Studies of pelagic-benthic coupling extended onto the Soviet continental shelf in the northern Bering and Chukchi seas. Cont Shelf Res 13:653–668

    Article  Google Scholar 

  75. Grebmeier JM (2003) The western Arctic shelf-basin interactions project. Arctic Research of the United States 17:24–32

    Google Scholar 

  76. Grebmeier JM, Barry JP (1991) The influence of oceanographic processes on pelagic-benthic coupling in polar regions: a benthic perspective. J Mar Syst 2: 495–518

    Article  Google Scholar 

  77. Grebmeier JM, Cooper JP (1995) Influence of the St. Lawrence Island Polynya upon the Bering Sea benthos. J Geophys Res 100:3349–4460

    Article  Google Scholar 

  78. Grebmeier JM, McRoy CP (1989) Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi Seas. III. Benthic food supply and carbon cycling. Mar Ecol Prog Ser 53:79–91

    Google Scholar 

  79. Grebmeier JM, Smith WO, Conover RB (1995) Biological processes on Arctic continental shelves: ice-ocean-biotic interactions. In: Smith WO, Grebmeier JM (eds) Arctic oceanography: marginal zones and continental shelves. American Geophysical Union, Washington, D.C., pp 231–261

    Google Scholar 

  80. Gukov AY (1995) Hydrobiological research in the Lena polynya. Ber Polarforsch 176:228–229

    Google Scholar 

  81. Gutt J (1991) On the distribution and ecology of holothurians in the Weddell Sea (Antarctica). Polar Biol 11:145–155

    Article  Google Scholar 

  82. Gutt J (2001) On the direct impact of ice on marine benthic communities, a review. Polar Biol 24:553–564

    Article  Google Scholar 

  83. Gutt J, Piepenburg D (2003) Scale-dependent impact on diversity of Antarctic benthos caused by grounding of icebergs. Mar Ecol Prog Ser 253:77–83

    Google Scholar 

  84. Gutt J, Sirenko BI, Smirnov IS, Arntz WE (2004) How many macrozoobenthic species might inhabit the Antarctic shelf? Antarct Sci 16:11–16

    Article  Google Scholar 

  85. Haedrich RL, Rowe GT, Polloni PT (1980) The megabenthic fauna in the deep sea south of New England, USA. Mar Biol 57:165–179

    Article  Google Scholar 

  86. Hargrave BT (1973) Coupling carbon flow through some pelagic and benthic communities. J Fish Res Board Can 30:1317–1326

    Google Scholar 

  87. Hebbeln D, Wefer G (1991) Effects of ice coverage and ice-rafted material on sedimentation in the Fram Strait. Nature 350:409–411

    Article  Google Scholar 

  88. Hedgpeth JW (1977) The Antarctic marine ecosystem. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Smithsonian Institution, Washington DC, pp 3–10

    Google Scholar 

  89. Heding SG (1942) Holothurioidea. Part II. Aspidochirota – Elasipoda – Dendrochirota. Danish Ingolf-Expedition 4:43–78

    Google Scholar 

  90. Hempel G (1985) On the biology of polar seas, particularly the Southern Ocean. In: Gray JS, Christiansen ME (eds) Marine biology of polar regions and the effect of stress on marine organisms. Wiley, Chichester, pp 3–34

    Google Scholar 

  91. Herman Y (1989) The Arctic seas. Van Nostrand Reinhold, New York, 888 pp

    Google Scholar 

  92. Hessler RR, Jumars PA (1974) Abyssal community analysis from replicate box cores in the central North Pacific. Deep-Sea Res 21:185–209

    Google Scholar 

  93. Highsmith RC, Coyle KO (1990) High productivity of northern Bering Sea benthic amphipods. Nature 344:862–864

    Article  Google Scholar 

  94. Highsmith RC, Coyle KO (1992) Productivity of Arctic amphipods relative to gray whale energy requirements. Mar Ecol Prog Ser 83:141–150

    Google Scholar 

  95. Hirche H-J, Hagen W, Mumm N, Richter C (1994) The Northeast Water Polynya, Greenland Sea. III. Meso- and macrozooplankton distribution and production of dominant herbivorous copepods during spring. Polar Biol 14:491–503

    Article  Google Scholar 

  96. Hirche H-J, Kattner G (1994) The 1993 Northeast water expedition. Scientific cruise report of RV “Polarstern" Arctic cruises ARK-IX/2 and 3, USCG “Polar Sea" cruise NEWP and the NEWLand expedition. Ber Polarforsch 142:1–190

    Google Scholar 

  97. Hirche H-J, Kwasniewski S (1997) Distribution, reproduction and development of Calanus species in the Northeast Water in relation to environmental conditions. J Mar Syst 10:299–317

    Article  Google Scholar 

  98. Hobson KA, Ambrose Jr WG, Renaud PE (1995) Sources of primary production, benthic-pelagic coupling, and trophic relationships within the Northeast Water Polynya: insights from δ13C and δ15N analysis. Mar Ecol Prog Ser 128:1–10

    Google Scholar 

  99. Honjo S (1990) Particle fluxes and modern sedimentation in the polar oceans. In: Smith Jr WO (ed) Polar oceanography, Part B: Chemistry, biology, and geology. Academic, San Diego, pp 687–734

    Google Scholar 

  100. Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg S-Å, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208

    Google Scholar 

  101. Hulth S, Blackburn TH, Hall POJ (1994) Arctic sediments (Svalbard)—consumption and microdistribution of oxygen. Mar Chem 46:293–316

    Article  CAS  Google Scholar 

  102. Hurlbert SH (1971) The non-concept of species diversity: a critique and alternative parameters. Ecology 52:577–586

    Google Scholar 

  103. Huston M (1979) A general hypothesis of species diversity. Am Nat 113:81–101

    Article  Google Scholar 

  104. Intergovernmental Panel on Climate Change (IPCC) (2001) Climate Change 2000. Third assessment report, Cambridge University Press

  105. Jakobsson M, Løvlie R, Arnold EM, Backman J, Polyak L, Knutsen JO, and Musatov E (2001) Pleistocene stratigraphy and paleoenvironmental variation from Lomonossov Ridge sediments, central Arctic Ocean. Glob Planet Change 31:1–21

    Article  Google Scholar 

  106. Jewett SC, Feder HM (1981) Epifaunal invertebrates of the continental shelf of the eastern Bering and Chukchi Seas. In: Hood DW, Calder JA (eds) The eastern Bering Sea shelf, Vol. II: Oceanography and resources. Univ. Washington Press, Seattle, pp 1131–1153

  107. Jewett SC, Feder HM, Blanchard A (1999) Assessment of the benthic environment following offshore placer gold mining in the northeastern Bering Sea. Mar Env Res 48:91–122

    Article  CAS  Google Scholar 

  108. Johannessen OM, Miles M, Bjorgo E (1995) The Arctic’s shrinking sea ice. Nature 376:126–127

    Article  CAS  Google Scholar 

  109. Karnovsky N, Kwasniewski S, Weslawski JM, Walkusz W, Beszczynska-Moller A (2003) Foraging behaviour of little auks in a heterogeneous environment. Mar Ecol Prog Ser 253:289–303

    Google Scholar 

  110. Kassens H, Bauch HA, Dmitrenko IA, Eicken H, Hubberten H-W, Melles M, Thiede J, Timokhov LA (eds) (1999) Land-ocean systems in the Siberian Arctic: Dynamics and history. Springer, Berlin Heidelberg New York, 711 pp

    Google Scholar 

  111. Kemp PF (1994) Microbial carbon utilization on the continental shelf and slope during the SEEP-II experiment. Deep-Sea Res II 41:563–581

    Article  CAS  Google Scholar 

  112. Kendall MA (1996) Are Arctic soft-sediment macrobenthic communities impoverished? Polar Biol 16:393–399

    Article  Google Scholar 

  113. Kendall MA, Aschan M (1993) Latitudinal gradients in the structure of macrobenthic communities: a comparison of Arctic, temperate and tropical sites. J Exp Mar Biol Ecol 172:157–169

    Article  Google Scholar 

  114. Kendall MA, Widdicombe S, Weslawski JM (2003) A multi-scale study of the biodiversity of the benthic infauna of the high-latitude Kongsfjord, Svalbard. Polar Biol 26:383–388

    Google Scholar 

  115. Klages M, Boetius A, Christensen JP, Deubel H, Piepenburg D, Schewe I, Soltwedel T (2003) The benthos of Arctic Seas and its role for the carbon cycle at the seafloor. in: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean: present and past. Springer, Berlin Heidelberg New York, pp 139–167

    Google Scholar 

  116. Klages M, Vopel K, Bluhm H, Brey T, Soltwedel T, Arntz WE (2001) Deep-sea food falls: first observation of a natural event in the Arctic Ocean. Polar Biol 24:292–295

    Article  Google Scholar 

  117. Knox GA, Lowry JK (1977) A comparison between the benthos of the Southern Ocean and the North Polar Ocean, with special reference to the Amphipoda and the Polychaeta. In: Dunbar MJ (ed) Polar oceans. Arctic Institute of North America, Calgary, pp 423–462

    Google Scholar 

  118. Kröncke I (1994) Macrobenthos composition, abundance and biomass in the Arctic Ocean along a transect between Svalbard and the Makarov Basin. Polar Biol 14:519–529

    Google Scholar 

  119. Kröncke I (1998) Macrofauna communities in the Amundsen Basin, at the Morris Jesup Rise and at the Yermak Plateau (Eurasian Arctic Ocean). Polar Biol 19:383–392

    Article  Google Scholar 

  120. Kröncke I, Vanreusel A, Vincx M, Wollenburg J, Mackensen A, Liebezeit G, Behrends B (2000) Different benthic size-compartments and their relationship to sediment chemistry in the deep Eurasian Arctic Ocean. Mar Ecol Prog Ser 199:31–41

    Google Scholar 

  121. Kvitek RG, Conlan KE, Iampietro PJ (1998) Black pools of death: Hypoxic, brine-filled ice gouge depressions become lethal traps for benthic organisms in a shallow Arctic embayment. Mar Ecol Prog Ser 162:1–10

    Google Scholar 

  122. Lampitt RS, Billett DSM, Rice AL (1986) Biomass of the invertebrate megabenthos from 500 to 4100 m in the northeast Atlantic Ocean. Mar Biol 93:69–81

    Article  Google Scholar 

  123. Legendre L, Ackley SF, Dieckmann GS, Gulliksen B, Horner R, Hoshiai T, Melnikov IA, Reeburgh WS, Spindler M, Sullivan CW (1992) Ecology of sea ice biota. 2. Global significance. Polar Biol 12:429–444

    Google Scholar 

  124. Levin LA, Gooday AJ (2003) The deep Atlantic Ocean. In: Tyler PA (ed) Ecosystems of the world, vol. 28: Ecosystems of the deep sea. Elsevier, Amsterdam, pp 111–178

  125. Lisitsin AP (1995) The marginal filter of the ocean. Oceanology 34:583–590

    Google Scholar 

  126. Loeng H (1989) Ecological features of the Barents Sea. In: Rey L, Alexander V (eds) Proceedings of the 6th conference of the Comité Arctique International. Brill, Leiden, pp 327–365

    Google Scholar 

  127. Lozán JL, Graßl H, Hupfer P (2001) Climate of the 21st century: changes and risks. Wissenschaftliche Auswertungen, Hamburg, 449 pp

    Google Scholar 

  128. Macdonald RW (1996) Awakenings in the Arctic. Nature 380:286–287

    Article  CAS  Google Scholar 

  129. Macdonald RW (2000) Arctic estuaries and ice: a positive-negative estuarine couple. In: Lewis EL (ed) The freshwater budget of the Arctic Ocean. NATO ASI Series, pp 383–407

  130. Macdonald RW, Carmack EC (1991) Age of Canada Basin deep waters: a way to estimate primary production for the Arctic Ocean. Science 254:1348–1350

    PubMed  CAS  Google Scholar 

  131. Macdonald RW, Carmack EC, McLaughlin FA, Falkner KK, Swift JH (1999) Connections among ice, runoff and atmospheric forcing in the Beaufort Gyre. Geophys Res Lett 26:2223–2226

    Article  CAS  Google Scholar 

  132. Macdonald RW, Carmack EC, Wallace DWR (1993) Tritium and radiocarbon dating of Canada Basin deep waters. Science 259:103–104

    PubMed  CAS  Google Scholar 

  133. MacGinitie GE (1955) Distribution and ecology of the marine invertebrates of Point Barrow, Alaska. Smithsonian Miscellaneous Collections 128:1–201

    Google Scholar 

  134. Magurran AE (1988) Ecological diversity and its measurement. Chapman and Hall, New York, 179 pp

    Google Scholar 

  135. Martin JH, Knauer GA, Karl DM (1987) Vertex: carbon cycling in the northeast Pacific. Deep-Sea Res 34:267–285

    Article  CAS  Google Scholar 

  136. McRoy CP (1993) ISHTAR, the project: an overview of Inner Shelf Transfer and Recycling in the Bering and Chukchi Seas. Cont Shelf Res 13:473–479

    Article  Google Scholar 

  137. McRoy CP, Hood DW, Coachman LK, Walsh JJ, Goering J (1986) Processes and resources of the Bering Sea (PROBES): the development and accomplishments of the project. Cont Shelf Res 5:5–21

    Article  Google Scholar 

  138. Muus K (1981) Density and growth of juvenile Amphiura filiformis (Ophiuroidea) in the Øresund. Ophelia 20:153–168

    Google Scholar 

  139. Myhre AM, Thiede J, Firth JV et al. (1995) Proceedings Of the Ocean Drilling Program (Initial reports) 151. College Station, Texas, pp 1–926

  140. Niebauer HJ (1991) Bio-physical oceanographic interactions at the edge of the Arctic pack ice. J Mar Syst 2:209–232

    Article  Google Scholar 

  141. O’Dor R (2004) A census of marine life. BioScience 54:92–93

    Google Scholar 

  142. Paterson GLJ (1985) The deep-sea Ophiuroidea of the North Atlantic Ocean. Bull Brit Mus Nat Hist (Zool) 49:1–162

    Google Scholar 

  143. Paul AZ, Menzies RJ (1974) Benthic ecology of the high Arctic deep sea. Mar Biol 27:251–262

    Article  Google Scholar 

  144. Peck LS, Brockington S, Vanhove S, Beghyn M (1999) Community recovery following catastrophic iceberg impacts in a soft-sediment shallow-water site at Signy Island, Antarctica. Mar Ecol Prog Ser 186:1–8

    Google Scholar 

  145. Petersen GH (1984) Energy flow in comparable aquatic ecosystems from different climatic zones. Rapp P-v Réun Cons int Explor Mer 183:119–125

    Google Scholar 

  146. Petersen GH, Curtis MA (1980) Differences in energy flow through major components of subarctic, temperate and tropical marine shelf ecosystems. Dana 1:53–64

    Google Scholar 

  147. Peterson BJ, Holmes RM, McClelland JW, Vorosmarty CJ, Lammers RB, Shiklomanov AI, Shiklomanov IA, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2173

    Article  PubMed  CAS  Google Scholar 

  148. Pickett STA, White PS (eds) (1985) The ecology of natural disturbance and patch dynamics. Academic Press, Orlando, 472 pp

    Google Scholar 

  149. Piepenburg D (1995) “Glasnost'' in der arktischen Benthosforschung: Politisches Tauwetter im sibirischen Nordpolarmeer. In: Hempel I, Hempel G (eds) Biologie der Polarmeere. Gustav Fischer, Jena, pp 240–247

    Google Scholar 

  150. Piepenburg D (2000) Arctic brittle stars (Echinodermata: Ophiuroidea). Oceanogr Mar Biol Annu Rev 38:189–256

    Google Scholar 

  151. Piepenburg D, Blackburn TH, Dorrien CF, Gutt J, Hall POJ, Hulth S, Kendall MA, Opalinski KW, Rachor E, Schmid MK (1995) Partitioning of benthic community respiration in the Arctic (northwestern Barents Sea). Mar Ecol Prog Ser 118:199–213

    Google Scholar 

  152. Piepenburg D, Brandt A, Juterzenka K v, Mayer M, Schnack K, Seiler D, Witte U, Spindler M (2001) Patterns and determinants of the distribution and structure of benthic faunal assemblages in the northern North Atlantic. In: Schäfer P, Ritzrau W, Schlüter M, Thiede J (eds) The northern North Atlantic: a changing environment. Springer, Berlin Heidelberg New York, pp 179–19

    Google Scholar 

  153. Piepenburg D, Schmid MK (1996a) Brittle star fauna (Echinodermata: Ophiuroidea) of the Arctic northwestern Barents Sea: composition, abundance, biomass and spatial distribution. Polar Biol 16:383–392

    Article  Google Scholar 

  154. Piepenburg D, Schmid MK (1996b) Distribution, abundance, biomass, and mineralization potential of the epibenthic megafauna of the Northeast Greenland shelf. Mar Biol 125:321–332

    Article  Google Scholar 

  155. Piepenburg D, Schmid MK (1997) A photographic survey of the epibenthic megafauna of the Arctic Laptev Sea shelf: distribution, abundance, and estimates of biomass and organic carbon demand. Mar Ecol Prog Ser 147:63–75

    Google Scholar 

  156. Piepenburg D, Voß J, Gutt J (1997) Assemblages of sea stars (Echinodermata: Asteroidea) and brittle stars (Echinodermata: Ophiuroidea) in the Weddell Sea (Antarctica) and off Northeast Greenland (Arctic): A comparison of diversity and abundance. Polar Biol 17:305–322

    Google Scholar 

  157. Polyak L, Forman SL, Herlihy FA, Ivanov G, Krinitsky P (1997) Late Weichselian deglacial history of the Svyataya (Saint) Anna Trough, northern Kara Sea, Arctic Russia. Mar Geol 143:169–188

    Article  Google Scholar 

  158. Rachor E (1992) Scientific cruise report of the 1991 Arctic Expedition ARK-VIII/2 of RV “POLARSTERN" (EPOS II: Study of the European Arctic Shelf, “SEAS", of the European Science Foundation. Ber Polarforsch 115:1–150

    Google Scholar 

  159. Rey F, Loeng H (1985) The influence of ice and hydrographic conditions on the development of phytoplankton in the Barents Sea. In: Gray JS, Christiansen ME (eds) Marine biology of polar regions and effects of stress on marine organisms. Wiley, Chichester, pp 49–63

    Google Scholar 

  160. Rothrock DA, Yu Y, Maykut GA (1999) Thinning of the Arctic sea-ice cover. Geophys Res Lett 26:3469–3472

    Article  Google Scholar 

  161. Rowe GT, Boland GS, Phoel WC, Anderson RF, Biscaye PE (1994) Deep-sea respiration as an indication of lateral input of biogenic detritus from continental margins. Deep-Sea Res II 41:657–668

    Article  CAS  Google Scholar 

  162. Rowe GT, Polloni PT, Horner SG (1974) Benthic biomass estimates from the northwestern Atlantic Ocean and the northern Gulf of Mexico. Deep-Sea Res I 21:641–650

    Google Scholar 

  163. Sakshaug E (2003) Primary and secondary production in the Arctic seas. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean: present and past. Springer, Berlin Heidelberg New York, pp 57–82

    Google Scholar 

  164. Sakshaug E, Skjodal HR (1989) Life at the ice edge. Ambio 18:60–67

    Google Scholar 

  165. Salzwedel H, Rachor E, Gerdes D (1985) Benthic macrofauna communities in the German Bight. Veröff Inst Meeresforsch Bremerh 20:199–267

    Google Scholar 

  166. Sanders HL (1968) Marine benthic diversity: a comparative study. Am Nat 102:243–282

    Article  Google Scholar 

  167. Savidge G, Priddle J, Gilpin LC, Bathmann U, Murphy EJ, Owens NJP, Pollard RT, Turner DR, Veth C, Boyd P (1996) An assessment of the role of the marginal ice zone in the carbon cycle of the Southern Ocean. Antarct Sci 8:349–358

    Google Scholar 

  168. Schäfer P, Ritzrau W, Schlüter M, Thiede J (2001) The northern North Atlantic: a changing environment. Springer, Berlin Heidelberg New York, 500 pp

    Google Scholar 

  169. Schewe I, Soltwedel T (1999) Deep-sea meiobenthos of the central Arctic Ocean: distribution patterns and size-structure under extreme oligotrophic conditions. Vie et Milieu 49:79–92

    Google Scholar 

  170. Schewe I, Soltwedel T (2003) Benthic responses to ice-edge-induced particle flux in the Arctic Ocean. Polar Biol 26:610–620

    Article  Google Scholar 

  171. Schmid MK, Piepenburg D, Kassens H, Abramova EN, Gukov AY, Petryashov VV (2005) Trophic dynamics and carbon flux in the Laptev Sea. Prog Oceanogr (in prep.)

  172. Schneider W, Budéus G (1994) The North East Water Polynya (Greenland Sea). I. A physical concept of its generation. Polar Biol 14:1–9

    Article  Google Scholar 

  173. Sejr MK, Jensen KT, Rysgaard S (2000) Macrozoobenthic community structure in a high-arctic East Greenland fjord. Polar Biol 23:792–801

    Article  Google Scholar 

  174. Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Res II 45:517–567

    Article  Google Scholar 

  175. Sirenko BI (2001) List of species of free-living invertebrates of Eurasian Arctic seas and adjacent deep waters. Explor Fauna Seas 51(59):1–76

    Google Scholar 

  176. Sirenko BI, Piepenburg D (1994) Current knowledge on biodiversity and benthic zonation patterns of Eurasian Arctic shelf seas, with special reference to the Laptev Sea. Ber Polarforsch 144:69–77

    Google Scholar 

  177. Shindell DT, Miller RL, Schmidt GA, Pandolfo L (1999) Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature 399:452–455

    Article  CAS  Google Scholar 

  178. Sköld M, Loo L-O, Rosenberg R (1994) Production, dynamics and demography of an Amphiura filiformis population. Mar Ecol Prog Ser 103:81–90

    Google Scholar 

  179. Smirnov AV (1994a) Arctic echinoderms: composition, distribution and history of the fauna. In: David B, Guille A, Féral JP, Roux M (eds) Echinoderms through time (Echinoderms Dijon). Balkema, Rotterdam, pp 135–143

    Google Scholar 

  180. Smirnov IS (1994b) Biogeography and area types of the Southern Ocean ophiuroids (Echinodermata, Ophiuroidea). In: David B, Guille A, Féral JP, Roux M (eds) Echinoderms through time (Echinoderms Dijon). Balkema, Rotterdam, pp 477–488

    Google Scholar 

  181. Smith AB, Paterson GLJ, Lafay B (1995) Ophiuroid phylogeny and higher taxonomy: morphological, molecular and paleontological perspectives. Zool J Linn Soc 114:213–243

    Article  Google Scholar 

  182. Smith Jr KL (1974) Oxygen demands in San Diego Trough sediments: an in-situ study. Limnol Oceanogr 19:939–944

    CAS  Article  Google Scholar 

  183. Smith Jr KL, Hinga KR (1983) Sediment community respiration in the deep sea. In: Rowe GT (ed) The sea, vol. 8: Deep-sea biology. Wiley, New York, pp 331–337

  184. Smith Jr WO, Nelson DM (1985) Phytoplankton bloom produced by a receding ice edge in the Ross Sea: spatial coherence with the density field. Science 227:163–167

    PubMed  Google Scholar 

  185. Smith Jr WO, Sakshaug E (1990) Polar phytoplankton. In: Smith Jr WO (ed) Polar oceanography, Part B: Chemistry, biology, and geology. Academic, San Diego, pp 477–519

    Google Scholar 

  186. Smith SD, Muench RD, Pease CH (1990) Polynyas and leads: an overview of physical processes and environment. J Geophys Res 95:9461–9479

    Google Scholar 

  187. Snelgrove PVR, Butman CN (1994) Animal-sediment relationships revisited: cause versus effect. Oceanogr Mar Biol Annu Rev 32:111–177

    Google Scholar 

  188. Slagstad D (1985) A model of phytoplankton in the marginal ice zone of the Barents Sea. In: Gray JS, Christiansen ME (eds) Marine biology of polar regions and effects of stress on marine organisms. Wiley, Chichester, pp 35–48

    Google Scholar 

  189. Soltwedel T (1999) The expedition ARKTIS XV/1 of RV “Polarstern" in 1999: scientific dives with the ROV system. Ber Polarforsch 339:7–9

    Google Scholar 

  190. Soltwedel T, Juterzenka Kv, Premke K, Klages M (2003) What a lucky shot! Photographic evidence for a medium-sized natural food-fall at the deep seafloor. Oceanol Acta 26:623–628

    Article  Google Scholar 

  191. Soltwedel T, Schewe I (1998) Activity and biomass of the small benthic biota in the Central Arctic Ocean. Polar Biol 19:52–62

    Article  Google Scholar 

  192. Somero GN (1990) Life at low volume change: hydrostatic pressure as selective factor in the aquatic environment. Am Zool 30:123–135

    Google Scholar 

  193. Somero GN, Siebenaller JF, Hochachka PW (1983) Biochemical and physiological adaptations of deep-sea animals. In: Rowe GT (ed) The sea, Vol. 8: Deep-sea biology. Wiley and Sons, New York, pp 261–330

  194. Spielhagen R (2001) Enigmatic Arctic ice sheets. Nature 410: 427–428

    Article  PubMed  CAS  Google Scholar 

  195. Starmans A, Gutt J, Arntz WE (1999) Mega-epibenthic communities in Arctic and Antarctic shelf areas. Mar Biol 135:269–280

    Article  Google Scholar 

  196. Stein R (1996) Organic-carbon and carbonate distribution in Eurasian continental margin and Arctic Ocean deep-sea surface sediments: sources and pathways. Ber Polarforsch 212:243–267

    Google Scholar 

  197. Stein R, Fahl K, Fütterer DK, Galimov EM, Stepanets OV (eds) (2003) Siberian river run-off in the Kara Sea: characterisation, quantification, variability, and environmental significance. Elsevier, Amsterdam, 484 pp

    Google Scholar 

  198. Stein R, Macdonald RW (eds) (2003) The organic carbon cycle in the Arctic Ocean: present and past. Springer, Berlin Heidelberg New York, 363pp

    Google Scholar 

  199. Stewart PL (1983) Measurements of benthic macroinvertebrate standing crop of the Canadian continental shelf and slope of southern Davis Strait and Ungava Bay. Can J Fish Aquat Sci 40:652–658

    Google Scholar 

  200. Stirling I (1980) The biological importance of polynyas in the Canadian Arctic. Arctic 33:303–315

    Google Scholar 

  201. Suess E (1980) Particulate organic carbon flux in the oceans—surface productivity and oxygen utilization. Nature 288:260–265

    CAS  Google Scholar 

  202. Thiede J, Timokhov L, Bauch HA, Bolshiyanov DY, Dmitrenko I, Eicken H, Fahl K, Gukov A, Hölemann J, Hubberten H-W, von Juterzenka K, Kassens H, Melles M, Petryashov V, Pivovarov S, Priamikov S, Rachold V, Schmid MK, Siegert C, Spindler M, Stein R, Scientific Party (1999) Dynamics and history of the Laptev Sea and its continental hinterland: a summary. In: Kassens H, Bauch HA, Dmitrenko I, Eicken H, Hubberten H-W, Melles M, Thiede J, Timokhov L (eds) Land-ocean systems in the Siberian Arctic: dynamics and history. Springer, Berlin Heidelberg New York, pp 695–711

  203. Thomsen L, Graf G, Juterzenka Kv, Witte U (1995) An in situ experiment to investigate the depletion of seston above an interface feeder field on the continental slope of the western Barents Sea. Mar Ecol Prog Ser 123:295–300

    Google Scholar 

  204. Thomson MRA, Crame JA, Thomson JW (1991) Geological evolution of Antarctica. Cambridge University Press, Cambridge, 722 pp

    Google Scholar 

  205. Timokhov LA (1994) Regional characteristics of the Laptev and the East Siberian Seas: climate, topography, ice phases, thermohaline regime, circulation. Ber Polarforsch 144:15–31

    Google Scholar 

  206. Tyler PA (1995) Conditions for the existence of life at the deep-sea floor: an update. Oceanogr Mar Biol Annu Rev 33:221–244

    Google Scholar 

  207. Van Dover CL (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press, Princeton, 424 pp

    Google Scholar 

  208. Vanaverbeke J, Arbizu PM, Dahms HU, Schminke HK (1997) The metazoan meiobenthos along a depth gradient in the Arctic Laptev Sea with special attention to nematode communities. Polar Biol 18:391–401

    Article  Google Scholar 

  209. Vanegas SA, Mysak LA (2000) Is there a dominant timescale of natural climate variability in the Arctic? J Climate 13:3412–3434

    Article  Google Scholar 

  210. Vanreusel A, Clough L, Jacobsen K, Ambrose W, Jivaluk J, Ryheul V, Herman R, Vincx M (2000) Meiobenthos of the central Arctic Ocean with special emphasis on the nematode community structure. Deep-Sea Res I 47:1855–1879

    Article  Google Scholar 

  211. Vinogradova NG (1979) The geographical distribution of the abyssal and hadal (ultra-abyssal) fauna in relation to the vertical zonation of the ocean. Sarsia 64:41–50

    Google Scholar 

  212. Walsh JJ, Biscaye PE, Csanady GT (1988) The 1983–1984 shelf edge exchange processes (SEEP)-I experiment: hypothesis and highlights. Cont Shelf Res 8:435–456

    Article  Google Scholar 

  213. Walsh JJ, Dieterle DA, Muller-Karger FE, Aagaard K, Roach AT, Whitledge TE, Stockwell D (1997) CO2 cycling in the coastal ocean. II. Seasonal organic loading to the Canadian Basin from source waters south of Bering Strait. Cont Shelf Res 17:1–36

    Article  Google Scholar 

  214. Wassmann P, Peinert R, Smetacek V (1991) Patterns of production and sedimentation in the boreal and polar northeast Atlantic. Polar Res 10:209–228

    Google Scholar 

  215. Warwick RM, Clarke KR (1995) New ’biodiversity’ measures reveal a decrease in taxonomic distinctness with increasing stress. Mar Ecol Prog Ser 129:301–305

    Google Scholar 

  216. Wheeler PA, Gosselin M, Sherr E, Thibault D, Kirchman DL, Benner R, Whitledge TE (1996) Active cycling of organic carbon in the central Arctic Ocean. Nature 380:697–699

    Article  CAS  Google Scholar 

  217. White MG (1984) Marine benthos. In: Laws RM (ed) Antarctic ecology, vol. 2. Academic, London, pp 421–461

  218. Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251

    Google Scholar 

  219. Wilson EO (2003) The encyclopedia of life. Trends Ecol Evol 18:77–80

    Article  Google Scholar 

  220. Wlodarska-Kowalczuk M, Pearson TH (2004) Soft-bottom macrobenthic faunal associations and factors affecting species distributions in an Arctic glacial fjord (Kongsfjord, Spitsbergen). Polar Biol 27:155–167

    Article  Google Scholar 

  221. Wlodarska-Kowalczuk M, Weslawski JM (2001) Impact of climate warming on Arctic benthic biodiversity: a case study of two Arctic glacial bays. Clim Res 18:127–132

    Google Scholar 

  222. Wlodarska-Kowalczuk M, Weslawski JM, Kotwicki L (1998) Spitsbergen glacial bays macrobenthos—a comparative study. Polar Biol 20:66–73

    Article  Google Scholar 

  223. Zenkevitch LA (1963) Biology of the seas of the USSR. George Allen and Unwin, London, 955 pp

    Google Scholar 

Download references

Acknowledgments

I would like to thank Gotthilf Hempel (Kiel), Karen von Juterzenka (Kiel), Howard Feder (Fairbanks) and two anonymous reviewers for their constructive suggestions on the manuscript. Moreover, I gratefully acknowledge the input of all my colleagues who have helped with the development of the ideas presented in this essay.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dieter Piepenburg.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Piepenburg, D. Recent research on Arctic benthos: common notions need to be revised. Polar Biol 28, 733–755 (2005). https://doi.org/10.1007/s00300-005-0013-5

Download citation

Keywords

  • Arctic Ocean
  • Particulate Organic Carbon
  • Brittle Star
  • Arctic Shelf
  • Central Arctic Ocean