Skip to main content
Log in

Microplastic contamination in the agricultural soil—mitigation strategies, heavy metals contamination, and impact on human health: a review

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Microplastic pollution has emerged as a critical global environmental issue due to its widespread distribution, persistence, and potential adverse effects on ecosystems and human health. Although research on microplastic pollution in aquatic environments has gained significant attention. However, a limited literature has summarized the impacts of microplastic pollution the agricultural land and human health. Therefore, In the current review, we have discussed how microplastic(s) affect the microorganisms by ingesting the microplastic present in the soil, alternatively affecting the belowground biotic and abiotic components, which further elucidates the negative effects on the above-ground properties of the crops. In addition, the consumption of these crops in the food chain revealed a potential risk to human health throughout the food chain. Moreover, microplastic pollution has the potential to induce a negative impact on agricultural production and food security by altering the physiochemical properties of the soil, microbial population, nutrient cycling, and plant growth and development. Therefore, we discussed in detail the potential hazards caused by microplastic contamination in the soil and through the consumption of food and water by humans in daily intake. Furthermore, further study is urgently required to comprehend how microplastic pollution negatively affects terrestrial ecosystems, particularly agroecosystems which drastically reduces the productivity of the crops. Our review highlights the urgent need for greater awareness, policy interventions, and technological solutions to address the emerging threat of microplastic pollution in soil and plant systems and mitigation strategies to overcome its potential impacts on human health. Based on existing studies, we have pointed out the research gaps and proposed different directions for future research.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not Applicable.

Code availability

Not Applicable.

References

  • Abbasi S, Turner A (2021) Dry and wet deposition of microplastics in a semi-arid region (Shiraz, Iran). Sci Total Environ 786:147358

    Article  PubMed  ADS  CAS  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Cell junctions. In: Molecular biology of the cell, 4th edn. Garland Science, New York

  • Ali N, Liu W, Zeb A, Shi R, Lian Y, Wang Q, Wang J, Li J, Zheng Z, Liu J, Yu M, Liu J (2024) Environmental fate, aging, toxicity and potential remediation strategies of microplastics in soil environment: current progress and future perspectives. Sci Total Environ 906:167785

    Article  PubMed  ADS  CAS  Google Scholar 

  • Amare G, Desta B (2021) Coloured plastic mulches: impact on soil properties and crop productivity. Chem Biolog Technol Agri 8(1):1–9

    Google Scholar 

  • Bai B, Chen J, Bai F, Nie Q, Jia X (2024) Corrosion effect of acid/alkali on cementitious red mud-fly ash materials containing heavy metal residues. Environ Technol Innov 33:103485. https://doi.org/10.1016/j.eti.2023.103485

    Article  CAS  Google Scholar 

  • Blackburn K, Green D (2022) The potential effects of microplastics on human health: what is known and what is unknown. Ambio 51(3):518–530

    Article  PubMed  ADS  Google Scholar 

  • Boots B, Russell CW, Green DS (2019) Effects of microplastics in soil ecosystems: above and below ground. Environ Sci Technol 53(19):11496–11506

    Article  PubMed  ADS  CAS  Google Scholar 

  • Bosker T, Bouwman LJ, Brun NR, Behrens P, Vijver MG (2019) Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 226:774–781

    Article  PubMed  ADS  CAS  Google Scholar 

  • Bouwstra J, Pilgram G, Gooris G, Koerten H, Ponec M (2001) New aspects of the skin barrier organization. Skin Pharmacol Physiol 14(1):52–62

    Article  CAS  Google Scholar 

  • Brooker RW, Hawes C, Iannetta PPM, Karley AJ, Renard D (2023) Plant diversity and ecological intensification in crop production systems. J Plant Ecol 16:rtad015

  • Buzhdygan OY, Petermann JS (2023) Multitrophic biodiversity enhances ecosystem functions, services and ecological intensification in agriculture. J Plant Ecol 16:rtad019

  • Campanale C, Massarelli C, Savino I, Locaputo V, Uricchio VF (2020) A detailed review study on potential effects of microplastics and additives of concern on human health. Int J Environ Res Public Health 17(4):1212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carr KE, Smyth SH, McCullough MT, Morris JF, Moyes SM (2012) Morphological aspects of interactions between microparticles and mammalian cells: intestinal uptake and onward movement. Prog Histochem Cytochem 46(4):185–252

    Article  PubMed  Google Scholar 

  • Chen G, Li Y, Liu S, Junaid M, Wang J (2022) Effects of micro (nano) plastics on higher plants and the rhizosphere environment. Sci Total Environ 807:150841

    Article  PubMed  ADS  CAS  Google Scholar 

  • Chen H, Ye Q, Wang X, Sheng J, Yu X, Zhao S, Zou X, Zhang W, Xue G (2024a) Applying sludge hydrolysate as a carbon source for biological denitrification after composition optimization via red soil filtration. Water Res 249:120909. https://doi.org/10.1016/j.watres.2023.120909

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Ma T, Li Z, Zhu W, Li L (2024b) Enhanced photocatalytic performance of S-scheme CdMoO4/CdO nanosphere photocatalyst. J Mater Sci Technol 179:198–207. https://doi.org/10.1016/j.jmst.2023.07.029

    Article  Google Scholar 

  • Cloete L, Picot-Allain C, Ramasawmy B, Neetoo H, Ramful-Baboolall D, Emmambux MN (2021) Drivers and barriers for commercial uptake of edible coatings for fresh fruits and vegetables industry-a review. Food Rev Int 39:1–34

    Google Scholar 

  • De Souza Machado AA, Lau CW, Kloas W, Bergmann J, Bachelier JB, Faltin E, Rillig MC (2019) Microplastics can change soil properties and affect plant performance. Environ Sci Tech 53(10):6044–6052

    Article  Google Scholar 

  • Dilnawaz F, Misra AN, Apostolova E (2023) Involvement of nanoparticles in mitigating plant's abiotic stress. Plant Stress 10:100280

    Article  CAS  Google Scholar 

  • Din MI, Ghaffar T, Najeeb J, Hussain Z, Khalid R, Zahid H (2020) Potential perspectives of biodegradable plastics for food packaging application-review of properties and recent developments. Food Add Contam: Part A 37(4):665–680

    Article  CAS  Google Scholar 

  • Dong Y, Gao M, Qiu W, Song Z (2021) Uptake of microplastics by carrots in presence of As (III): combined toxic effects. J Hazard Mater 411:125055. https://doi.org/10.1016/j.jhazmat.2021.125055

    Article  PubMed  CAS  Google Scholar 

  • Elliott T, Gillie H, Thomson A (2020) European Union’s plastic strategy and an impact assessment of the proposed directive on tackling single-use plastics items. In: Plastic waste and recycling. Academic, Amsterdam, pp 601–633

  • Fadeeva Z, Van Berkel R (2021) Unlocking circular economy for prevention of marine plastic pollution: an exploration of G20 policy and initiatives. J Environ Manage 277:111457

    Article  PubMed  Google Scholar 

  • Galafassi S, Nizzetto L, Volta P (2019) Plastic sources: a survey across scientific and grey literature for their inventory and relative contribution to microplastics pollution in natural environments, with an emphasis on surface water. Sci Total Environ 693:133499

    Article  PubMed  ADS  CAS  Google Scholar 

  • Ge H, Yan Y, Wu D, Huang Y, Tian F (2018) Potential role of LINC00996 in colorectal cancer: a study based on data mining and bioinformatics. OncoTargets Ther 11:4845–4855

    Article  Google Scholar 

  • Gigault J, El Hadri H, Nguyen B, Grassl B, Rowenczyk L, Tufenkji N, Feng S, Wiesner M (2021) Nanoplastics are neither microplastics nor engineered nanoparticles. Nat Nanotechnol 16:501–507

    Article  PubMed  ADS  CAS  Google Scholar 

  • Goh PS, Kang HS, Ismail AF, Khor WH, Quen LK, Higgins D (2022) Nanomaterials for microplastic remediation from aquatic environment: why nano matters? Chemosphere 299:134418

    Article  PubMed  CAS  Google Scholar 

  • Gong W, Zhang W, Jiang M, Li S, Liang G, Bu Q, Xu L, Zhu H, Lu A (2021) Species-dependent response of food crops to polystyrene nanoplastics and microplastics. Sci Total Environ 796:148750

    Article  PubMed  ADS  CAS  Google Scholar 

  • Gu Q, Li S, Liao Z (2024) Solving nonlinear equation systems based on evolutionary multitasking with neighborhood-based speciation differential evolution. Expert Syst Appl 238:122025. https://doi.org/10.1016/j.eswa.2023.122025

    Article  Google Scholar 

  • Gundogdu S, Rathod N, Hassoun A, Jamroz E, Kulawik P, Gokbulut C, Özogul F (2022) The impact of nano/micro-plastics toxicity on seafood quality and human health: facts and gaps. Crit Rev Food Sci Nutr 63:6445–6463

    Article  PubMed  Google Scholar 

  • Hernandez LM, Yousefi N, Tufenkji N (2017) Are there nanoplastics in your personal care products? Environ Sci Technol Lett 4(7):280–285

    Article  CAS  Google Scholar 

  • Hernández-Arenas R, Beltrán-Sanahuja A, Navarro-Quirant P, Sanz-Lazaro C (2021) The effect of sewage sludge containing microplastics on growth and fruit development of tomato plants. Environ Pollut 268:115779

    Article  PubMed  Google Scholar 

  • Holden E, Linnerud K, Banister D (2017) The imperatives of sustainable development. Sustain Dev 25(3):213–226

    Article  Google Scholar 

  • Hou J, Xu X, Yu H, Xi B, Tan W (2021) Comparing the long-term responses of soil microbial structures and diversities to polyethylene microplastics in different aggregate fractions. Environ Int 149:106398

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Liu Q, Jia W, Yan C, Wang J (2020) Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environ Pollut 260:114096

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Song B, Liang J, Niu Q, Zeng G, Shen M, Zhang Y (2021) Microplastics and associated contaminants in the aquatic environment: a review on their ecotoxicological effects, trophic transfer, and potential impacts to human health. J Hazard Mater 405:124187

    Article  PubMed  CAS  Google Scholar 

  • Huang D, Wang X, Yin L, Chen S, Tao J, Zhou W, Xiao R (2022) Research progress of microplastics in soil-plant system: ecological effects and potential risks. Sci Total Environ 812:151487

    Article  PubMed  ADS  CAS  Google Scholar 

  • Ingraffia R, Amato G, Iovino M, Rillig MC, Giambalvo D, Frenda AS (2022) Polyester microplastic fibers in soil increase nitrogen loss via leaching and decrease plant biomass production and N uptake. Environ Res Lett 17:113259

    Article  Google Scholar 

  • Iqbal B, Javed Q, Khan I, Tariq M, Ahmad N, Elansary HO, Jalal A, Li G, Du D (2023a) Influence of soil microplastic contamination and cadmium toxicity on the growth, physiology, and root growth traits of Triticum aestivum L. S Afr J Bot 160:369–375

    Article  CAS  Google Scholar 

  • Iqbal B, Li G, Alabbosh KF, Hussain H, Khan I, Tariq M, Javed Q, Naeem M, Ahmad N (2023b) Advancing environmental sustainability through microbial reprogramming in growth improvement, stress alleviation, and phytoremediation. Plant Stress 10:100283

    Article  Google Scholar 

  • Iqbal B, Zhao T, Yin W, Zhao X, Xie Q, Khan KY, Du D (2023c) Impacts of soil microplastics on crops: a review. Appl Soil Ecol 181:104680

    Article  Google Scholar 

  • Iqbal B, Zhao X, Khan KY, Javed Q, Nazar M, Khan I, Zhao X, Li G, Du D (2024) Microplastics meet invasive plants: unraveling the ecological hazards to agroecosystems. Sci Total Environ 906:167756

    Article  PubMed  ADS  CAS  Google Scholar 

  • Jiang X, Chen H, Liao Y, Ye Z, Li M, Klobucar G (2019) Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environ Pollut 250:831–838. https://doi.org/10.1016/j.envpol.2019.04.055

    Article  PubMed  CAS  Google Scholar 

  • Khalid N, Aqeel M, Noman A (2020) Microplastics could be a threat to plants in terrestrial systems directly or indirectly. Environ Pollut 267:115653

    Article  PubMed  CAS  Google Scholar 

  • Khalid N, Aqeel M, Noman A, Hashem M, Mostafa YS, Alhaithloul HAS, Alghanem SM (2021) Linking effects of microplastics to ecological impacts in marine environments. Chemosphere 264:128541

    Article  PubMed  CAS  Google Scholar 

  • Khan KY, Li G, Du D, Ali B, Zhang S, Zhong M, Stoffella PJ, Iqbal B, Cui X, Fu L, Guo Y (2023) Impact of polystyrene microplastics with combined contamination of norfloxacin and sulfadiazine on Chrysanthemum coronarium L. Environ Pollut 316:120522

    Article  PubMed  CAS  Google Scholar 

  • Khan AR, Ulhassan Z, Li G, Lou J, Iqbal B, Salam A, Azhar W, Batool S, Zhao T, Li K, Zhang Q, Zhao X, Du D (2024) Micro/nanoplastics: critical review of their impacts on plants, interactions with other contaminants (antibiotics, heavy metals, and polycyclic aromatic hydrocarbons), and management strategies. Sci Total Environ 912:169420

    Article  PubMed  ADS  CAS  Google Scholar 

  • Kumar R, Ivy N, Bhattacharya S, Dey A, Sharma P (2022) Coupled effects of microplastics and heavy metals on plants: uptake, bioaccumulation, and environmental health perspectives. Sci Total Environ 836:155619

    Article  PubMed  ADS  CAS  Google Scholar 

  • Lee TY, Kim L, Kim D, An S, An YJ (2022) Microplastics from shoe sole fragments cause oxidative stress in a plant (Vigna radiata) and impair soil environment. J Hazard Mater 429:128306

    Article  PubMed  CAS  Google Scholar 

  • Lehner R, Weder C, Petri-Fink A, Rothen-Rutishauser B (2019) Emergence of nanoplastic in the environment and possible impact on human health. Environ Sci Tech 53(4):1748–1765

    Article  CAS  Google Scholar 

  • Li Y, Li M, Li Z, Yang L, Liu X (2019) Effects of particle size and solution chemistry on Triclosan sorption on polystyrene microplastic. Chemosphere 231:308–314

    Article  PubMed  ADS  CAS  Google Scholar 

  • Li L, Luo Y, Li R, Zhou Q, Peijnenburg WJ, Yin N, Zhang Y (2020a) Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat Sustain 3(11):929–937

    Article  Google Scholar 

  • Li R, Zhu L, Yang K, Li H, Zhu YG, Cui L (2021) Impact of urbanization on antibiotic resistome in different microplastics: evidence from a large-scale whole river analysis. Environ Sci Technol 55(13):8760–8770

    Article  PubMed  ADS  CAS  Google Scholar 

  • Li J, Yu S, Yu Y, Xu M (2022) Effects of microplastics on higher plants: a review. Bull Environ Contam Toxicol 109(2):241–265

    Article  PubMed  CAS  Google Scholar 

  • Li G, Tang Y, Khan KY, Son Y, Jung J, Qiu X, Zhao X, Iqbal B, Stoffella PJ, Kim GJ, Du D (2023a) The toxicological effect on Pak Choi of co-exposure to degradable and non-degradable microplastics with oxytetracycline in the soil. Ecotoxicol Environ Saf 268:115707

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Li R, Li Q, Zhou J, Wang G (2020a) Physiological response of cucumber (Cucumis sativus L.) leaves to polystyrene nanoplastics pollution. Chemosphere 255:127041

  • Li G, Zhao X, Iqbal B, Zhao X, Liu J, Javed Q, Du D (2023b) The effect of soil microplastics on the Oryza sativa L. root growth traits under alien plant invasion. Front Ecol Evol 11:1172093

  • Li W, Wang C, Liu H, Wang W, Sun R, Li M, Shi Y, Zhu, D, Du W, Ma L, Fu S (2023) Fine root biomass and morphology in a temperate forest are influenced more by canopy water addition than by canopy nitrogen addition. Front Ecol Evol 11. https://doi.org/10.3389/fevo.2023.1132248

  • Lian J, Wu J, Xiong H, Zeb A, Yang T, Su X, Su L, Liu W (2020) Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). J Hazard Mater 385:121620

  • Liu Y, Tao Q, Guo X, Luo J, Li J, Liang Y, Li T (2020) Low calcium-induced delay in development of root apoplastic barriers enhances Cd uptake and accumulation in Sedum alfredii. Sci Total Environ 723:137810

    Article  PubMed  ADS  CAS  Google Scholar 

  • Liu S, Wang J, Zhu J, Wang J, Wang H, Zhan X (2021) The joint toxicity of polyethylene microplastic and phenanthrene to wheat seedlings. Chemosphere 282:130967

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Guo R, Zhang S, Sun Y, Wang F (2022) Uptake and translocation of nano/microplastics by rice seedlings: evidence from a hydroponic experiment. J Hazard Mater 421:126700

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Xu F, Ding L, Zhang G, Bai B, Han Y, Li G (2023) Microplastics reduce nitrogen uptake in peanut plants by damaging root cells and impairing soil nitrogen cycling. J Hazard Mater 443:130384

    Article  PubMed  CAS  Google Scholar 

  • Lozano YM, Rillig MC (2020) Effects of microplastic fibers and drought on plant communities. Environ Sci Technol 54(10):6166–6173. https://doi.org/10.1021/acs.est.0c01051

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  • Lozano YM, Aguilar-Trigueros CA, Onandia G, Maaß S, Zhao T, Rillig MC (2021) Effects of microplastics and drought on soil ecosystem functions and multifunctionality. J Appl Ecol 58(5):988–996

    Article  CAS  Google Scholar 

  • Lu Y, Si B, Li H, Biswas A (2019) Elucidating controls of the variability of deep soil bulk density. Geoderma 348:146–157

    Article  ADS  Google Scholar 

  • Lwanga EH, Beriot N, Corradini F, Silva V, Yang X, Baartman J, Geissen V (2022) Review of microplastic sources, transport pathways and correlations with other soil stressors: a journey from agricultural sites into the environment. Chem Biol Technol Agric 9(1):1–20

    Article  Google Scholar 

  • Lynch JP, Strock CF, Schneider HM, Sidhu JS, Ajmera I, Galindo-Castañeda T, Klein SP, Hanlon MT (2021) Root anatomy and soil resource capture. Plant Soil 466:21–63

    Article  CAS  Google Scholar 

  • Ma J, Qiu Y, Zhao J, Ouyang X, Zhao Y, Weng L, Yasir AMD, Chen Y, Li Y (2022b) Effect of agricultural organic inputs on nanoplastics transport in saturated goethite-coated porous media: particle size selectivity and role of dissolved organic matter. Environ Sci Technol 56(6):3524–3534. https://doi.org/10.1021/acs.est.1c07574

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  • Ma J, Aqeel M, Khalid N, Nazir A, Alzuaibr FM, Al-Mushhin AA, Noman A (2022) Effects of microplastics on growth and metabolism of rice (Oryza sativa L.). Chemosphere 307:135749

  • Mitrano DM, Wohlleben W (2020) Microplastic regulation should be more precise to incentivize both innovation and environmental safety. Nat Commun 11(1):5324

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  • National Oceanic and Atmospheric Administration (2023) Microplastics. Retrieved from https://oceanservice.noaa.gov/facts/microplastics.html. Accessed 03 June 2023

  • Nava V, Leoni B (2021) A critical review of interactions between microplastics, microalgae and aquatic ecosystem function. Water Res 188:116476

    Article  PubMed  CAS  Google Scholar 

  • Nazir MJ, Li G, Nazir MM, Zulfiqar F, Siddique KHM, Iqbal B, Du D (2024) Harnessing soil carbon sequestration to address climate change challenges in agriculture. Soil till Res 237:105959

    Article  Google Scholar 

  • Ohlwein S, Kappeler R, Kutlar JM, Künzli N, Hoffmann B (2019) Health effects of ultrafine particles: a systematic literature review update of epidemiological evidence. Int J Pub Health 64:547–559

    Article  Google Scholar 

  • Pehlivan N, Gedik K (2021) Particle size-dependent biomolecular footprints of interactive microplastics in maize. Environ Pollut 277:116772

    Article  PubMed  CAS  Google Scholar 

  • Pignattelli S, Broccoli A, Piccardo M, Felline S, Terlizzi A, Renzi M (2021) Short-term physiological and biometrical responses of Lepidium sativum seedlings exposed to PET-made microplastics and acid rain. Ecotoxicol Environ Saf 208:111718

    Article  PubMed  CAS  Google Scholar 

  • Porterfield KK, Hobson SA, Neher DA, Niles MT, Roy ED (2022) Microplastics in composts, digestates and food wastes: a review. J Environ Qual 52:225–240. https://doi.org/10.1002/jeq2.20450

    Article  CAS  Google Scholar 

  • Prata JC (2018) Airborne microplastics: consequences to human health? Environ Pollut 234:115–126

    Article  PubMed  CAS  Google Scholar 

  • Prata JC, da Costa JP, Lopes I, Duarte AC, Rocha-Santos T (2020) Environmental exposure to microplastics: an overview on possible human health effects. Sci Total Environ 702:134455

    Article  PubMed  ADS  CAS  Google Scholar 

  • Prem M, Ranjan P, Seth N, Patle GT (2020) Mulching techniques to conserve the soil water and advance the crop production – a review. Curr World Environ 15:10–30

    Google Scholar 

  • Qiu Y, Zhou S, Zhang C, Zhou Y, Qin W (2022) Soil microplastic characteristics and the effects on soil properties and biota: a systematic review and meta-analysis. Environ Pollut 313:120183

    Article  PubMed  CAS  Google Scholar 

  • Rahman A, Sarkar A, Yadav OP, Achari G, Slobodnik J (2021) Potential human health risks due to environmental exposure to nano-and microplastics and knowledge gaps: a scoping review. Sci Total Environ 757:143872

    Article  PubMed  ADS  CAS  Google Scholar 

  • Ran C, Bai X, Tan Q, Luo G, Cao Y, Wu L, Chen F, Li C, Lou X, Liu M, Zhang S (2023) Threat of soil formation rate to health of karst ecosystem. Sci Total Environ 887:163911. https://doi.org/10.1016/j.scitotenv.2023.163911

    Article  PubMed  ADS  CAS  Google Scholar 

  • Ren X, Tang J, Wang L, Liu Q (2021) Microplastics in soil-plant system: effects of nano/microplastics on plant photosynthesis, rhizosphere microbes and soil properties in soil with different residues. Plant Soil 462:561–576

    Article  CAS  Google Scholar 

  • Rillig MC (2018) Microplastic disguising as soil carbon storage. Environ Sci Technol 52:6079–6080

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  • Rillig MC, Lehmann A, de Souza Machado AA, Yang G (2019) Microplastic effects on plants. New Phytol 223(3):1066–1070

    Article  PubMed  Google Scholar 

  • Rist S, Almroth BC, Hartmann NB, Karlsson TM (2018) A critical perspective on early communications concerning human health aspects of microplastics. Sci Total Environ 626:720–726

    Article  PubMed  ADS  CAS  Google Scholar 

  • Rong L, Zhao L, Zhao L, Cheng Z, Yao Y, Yuan C, Wang L, Sun H (2021) LDPE microplastics affect soil microbial communities and nitrogen cycling. Sci Total Environ 773:145640

    Article  PubMed  ADS  CAS  Google Scholar 

  • Ruiz S, Koebernick N, Duncan S, Fletcher DM, Scotson C, Boghi A, Marin M, Bengough AG, George TS, Brown LK, Hallett PD, Roose T (2020) Significance of root hairs at the field scale–modelling root water and phosphorus uptake under different field conditions. Plant Soil 447:281–304

    Article  PubMed  CAS  Google Scholar 

  • Sajjad M, Huang Q, Khan S, Khan MA, Yin L, Wang J, Guo G (2022) Microplastics in the soil environment: a critical review. Environ Technol Innov 27:102408

    Article  CAS  Google Scholar 

  • Schmid B, Schöb C (2023) Ecological intensification of agriculture through biodiversity management: introduction. J Plant Ecol 16:rtad018

  • Schneider M, Stracke F, Hansen S, Schaefer UF (2009) Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol 1(4):197–206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shah AI, Dar MUD, Bhat RA, Singh JP, Singh K, Bhat SA (2020) Prospectives and challenges of wastewater treatment technologies to combat contaminants of emerging concerns. Ecol Eng 152:105882

    Article  Google Scholar 

  • Shen H, Sun Y, Duan H, Ye J, Zhou A, Meng H, Gu C (2023) Effect of PVC microplastics on soil microbial community and nitrogen availability under laboratory-controlled and field-relevant temperatures. Appl Soil Ecol 184:104794

    Article  Google Scholar 

  • Shi R, Liu W, Lian Y, Wang X, Men S, Zeb A, Wang Q, Wang J, Li J, Zheng Z, Zhou Q, Tang J, Sun Y, Wang F, Xing B (2023a) Toxicity mechanisms of nanoplastics on crop growth, interference of phyllosphere microbes, and evidence for foliar penetration and translocation. Environ Sci Technol 58(2):1010–1021

    Article  PubMed  ADS  Google Scholar 

  • Shi R, Liu W, Lian Y, Wang Q, Zeb A, Tang (2022) Phytotoxicity of polystyrene, polyethylene and polypropylene microplastics on tomato (Lycopersicon esculentum L.). J Environ Manage 317:115441

  • Shi R, Liu W, Lian Y, Zeb A, Wang Q (2023) Type-dependent effects of microplastics on tomato (Lycopersicon esculentum L.): Focus on root exudates and metabolic reprogramming. Sci Total Environ 859:160025

  • De Souza Machado AA, Horton AA, Davis T, Maaß S (2020) Microplastics and their effects on soil function as a life-supporting system. In: Microplastics in terrestrial environments: emerging contaminants and major challenges. Springer International Publishing, Cham, pp 199–222

  • Stapleton PA (2019) Toxicological considerations of nano-sized plastics. AIMS Environ Sci 6(5):367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun XD, Yuan XZ, Jia Y, Feng LJ, Zhu FP, Dong SS, Liu J, Kong X, Tian H, Duan JL, Ding Z, Wang SG, Xing B (2020) Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nat Nanotechnol 15(9):755–760. https://doi.org/10.1038/s41565-020-0707-4

    Article  PubMed  ADS  CAS  Google Scholar 

  • Sun Y, Duan C, Cao N, Li X, Li X, Chen Y, Wang J (2022) Effects of microplastics on soil microbiome: the impacts of polymer type, shape, and concentration. Sci Total Environ 806:150516

    Article  PubMed  ADS  CAS  Google Scholar 

  • Sun H, Shi Y, Zhao P, Long G, Li C, Wang J, He S (2023) Effects of polyethylene and biodegradable microplastics on photosynthesis, antioxidant defense systems, and arsenic accumulation in maize (Zea mays L.) seedlings grown in arsenic-contaminated soils. Sci Total Environ 868:161557

  • Tang Y, Yang G, Liu X, Qin L, Zhai W, Fodjo EK, Shen X, Wang Y, Lou X, Kong C (2023a) Rapid sample enrichment, novel derivatization, and high sensitivity for determination of 3-chloropropane-1,2-diol in soy sauce via high-performance liquid chromatography–tandem mass spectrometry. J Agric Food Chem 71(41):15388–15397. https://doi.org/10.1021/acs.jafc.3c05230

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Li G, Iqbal B, Tariq M, Rehman A, Khan I, Du D (2023b) Soil nutrient levels regulate the effect of soil microplastics contamination on microbial element metabolism and carbon use efficiency. Ecotoxicol Environ Saf 267:115640

    Article  PubMed  CAS  Google Scholar 

  • Torre GE (2020) Microplastics: an emerging threat to food security and human health. J Food Sci Tech 57(5):1601–1608

    Article  Google Scholar 

  • Urbina MA, Correa F, Aburto F, Ferrio JP (2020) Adsorption of polyethylene microbeads and physiological effects on hydroponic maize. Sci Total Environ 741:140216

    Article  PubMed  ADS  CAS  Google Scholar 

  • Wan Y, Wu C, Xue Q, Hui X (2019) Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci Total Environ 654:576–582. https://doi.org/10.1016/j.scitotenv.2018.11.123

    Article  PubMed  ADS  CAS  Google Scholar 

  • Wang F, Zhang X, Zhang S, Zhang S, Sun Y (2020) Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere 254:126791

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Wang Q, Adams CA, Sun Y, Zhang S (2022) Effects of microplastics on soil properties: current knowledge and future perspectives. J Hazard Mater 424:127531

    Article  PubMed  CAS  Google Scholar 

  • Wang SC, Liu GZ, Liu FF (2023) Physiological and metabolic toxicity of polystyrene microplastics to Dunaliella salina. Environ Pollut 316:120544

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Liu W, Wang X, Zeb A, Wang Q, Mo F, Shi R, Liu J, Yu M, Li J, Zheng Z, Lian Y (2024) Assessing stress responses in potherb mustard (Brassica juncea var. multiceps) exposed to a synergy of microplastics and cadmium: insights from physiology, oxidative damage, and metabolomics. Sci Total Environ 907:167920

  • Wu J, Liu W, Zeb A, Lian J, Sun Y, Sun H (2021) Polystyrene microplastic interaction with Oryza sativa: toxicity and metabolic mechanism. Environ Sci Nano 8(12):3699–3710

    Article  CAS  Google Scholar 

  • Xiang Y, Jiang L, Zhou Y, Luo Z, Zhi D, Yang J, Lam SS (2022) Microplastics and environmental pollutants: key interaction and toxicology in aquatic and soil environments. J Hazard Mater 422:126843

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Cheng P, Adams CA, Zhang S, Sun Y, Yu H, Wang F (2021) Effects of microplastics on plant growth and arbuscular mycorrhizal fungal communities in a soil spiked with ZnO nanoparticles. Soil Biol Biochem 155:108179

    Article  CAS  Google Scholar 

  • Yang Y, Li Z, Yan C, Chadwick D, Jones DL, Liu E, He W (2022) Kinetics of microplastic generation from different types of mulch films in agricultural soil. Sci Total Environ 814:152572

    Article  PubMed  ADS  CAS  Google Scholar 

  • Yi Q, Xu Z, Thakur A, Zhang K, Liang Q, Liu Y, Yan Y (2023) Current understanding of plant-derived exosome-like nanoparticles in regulating the inflammatory response and immune system microenvironment. Pharmacol Res 190:106733

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Fan P, Hou J, Dang Q, Cui D, Xi B, Tan W (2020) Inhibitory effect of microplastics on soil extracellular enzymatic activities by changing soil properties and direct adsorption: an investigation at the aggregate-fraction level. Environ Pollut 267:115544

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Li J, Song Y, Zhang Z, Yu S, Xu M, Zhao Y (2022) Stimulation versus inhibition: the effect of microplastics on Pak Choi growth. Appl Soil Ecol 177:104505

    Article  Google Scholar 

  • Zang H, Zhou J, Marshall MR, Chadwick DR, Wen Y, Jones DL (2020) Microplastics in the agroecosystem: are they an emerging threat to the plant-soil system? Soil Boil Biochem 148:107926. https://doi.org/10.1016/j.soilbio.2020.107926

    Article  CAS  Google Scholar 

  • Zeb A, Liu W, Ali N, Shi R, Lian Y, Wang Q, Wang J, Li J, Zheng Z, Liu J, Yu M, Liu J (2024) Integrating metabolomics and high-throughput sequencing to investigate the effects of tire wear particles on mung bean plants and soil microbial communities. Environ Pollut 340:122872

    Article  PubMed  CAS  Google Scholar 

  • Zhang GS, Zhang FX, Li XT (2019) Effects of polyester microfibers on soil physical properties: perception from a field and a pot experiment. Sci Total Environ 670:1–7. https://doi.org/10.1016/j.scitotenv.2019.03.149

    Article  PubMed  ADS  CAS  Google Scholar 

  • Zhang L, Xie Y, Liu J, Zhong S, Qian Y, Gao P (2020a) An overlooked entry pathway of microplastics into agricultural soils from application of sludge-based fertilizers. Environ Sci Technol 54(7):4248–4255

    Article  PubMed  ADS  CAS  Google Scholar 

  • Zhang Y, Pu S, Lv X, Gao Y, Ge L (2020b) Global trends and prospects in microplastics research: a bibliometric analysis. J Hazard Mater 400:123110

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Xie H, Zhao X, Zhang J, Li Z, Yin W, Yuan A, Zhou H, Manan S, Nazar M, Iqbal B, Li G, Du D (2022) Combined inhibitory effect of Canada goldenrod invasion and soil microplastics on rice growth. Int J Environ Res Pub Health 19(19):11947

    Article  CAS  Google Scholar 

  • Zhou J, Jia R, Brown RW, Yang Y, Zeng Z, Jones DL, Zang H (2023) The long-term uncertainty of biodegradable mulch film residues and associated microplastics pollution on plant-soil health. J Hazard Mater 442:130055

    Article  PubMed  CAS  Google Scholar 

  • Zhu G, Liu Y, Shi P, Jia W, Zhou J, Liu Y, Ma X, Pan H, Zhang Y, Zhang Z, Sun Z, Yong L, Zhao K (2022) Stable water isotope monitoring network of different water bodies in Shiyang River basin, a typical arid river in China. Earth Syst Sci Data 14(8):3773–3789. https://doi.org/10.5194/essd-14-3773-2022

    Article  ADS  Google Scholar 

  • Zhuang H, Liu X, Ma H, Li R, Liu B, Lin Z, Li Z (2023) Growth and physiological–biochemical characteristics of cucumber (Cucumis sativus L.) in the presence of different microplastics. Arab J Geosci 16(3):194

Download references

Funding

This work was supported by the Carbon Peak and Carbon Neutrality Technology Innovation Foundation of Jiangsu Province (BK20220030), the National Natural Science Foundation of China (32271587; 32350410400), the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2022R1I1A1A01055443), the Zhenjiang Municipal Policy Guidance Project of International Science and Technology Cooperation (Grant GJ2023005); the Zhenjiang Major Project of Social Development in Research and Development (Grant SH2022004), and the Senior Talent Foundation of Jiangsu University (18JDG039). This work was also supported by Zhenjiang Deweilepu Energy Environmental Protection Technology Co., Ltd. The authors wish to express their gratitude for the support. The authors also appreciated the help from Yan Shao during the writing.

Author information

Authors and Affiliations

Authors

Contributions

Muhammad Tariq: Roles/Writing – original draft, Conceptualization, Investigation; Babar Iqbal: Conceptualization, Investigation, Project administration, Resources, Writing – review & editing; Ismail Khan: Validation; Ali Raza Khan: Software, Conceptualization; Eun Hea Jho: Resources, Writing – review & editing; Abdul Salam: Software, Conceptualization, Writing – review & editing; Huan Zhou: Investigation, Validation; Xin Zhao: Resources, Investigation, Writing – review & editing; Guanlin Li: Supervision, Visualization, Writing – review & editing; Daolin Du: Supervision, Visualization, Writing – review & editing. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Babar Iqbal, Guanlin Li or Daolin Du.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

Not Applicable.

Consent to participate

Not Applicable.

Consent for publication

Not Applicable.

Additional information

Communicated by Anis Ali Shah.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, M., Iqbal, B., Khan, I. et al. Microplastic contamination in the agricultural soil—mitigation strategies, heavy metals contamination, and impact on human health: a review. Plant Cell Rep 43, 65 (2024). https://doi.org/10.1007/s00299-024-03162-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00299-024-03162-6

Keywords

Navigation