Skip to main content
Log in

Endogenous melatonin involved in plant salt response by impacting auxin signaling

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The study on melatonin biosynthesis mutant snat1snat2 revealed that endogenous melatonin plays an important role in salt responsiveness by mediating auxin signaling.

Abstract

Melatonin is a pleiotropic signaling molecule, which, besides being involved in multiple growth and developmental processes, also mediates environmental stress responses. However, whether and how endogenous melatonin is involved in salt response has not been determined. In this study, we elucidated the involvement of endogenous melatonin in salt response by investigatiing the impact of salt stress on a double mutant of Arabidopsis (snat1snat2) defective in melatonin biosynthesis genes SNAT1 and SNAT2. This mutant was found to exhibit salt sensitivity, manifested by unhealthy growth, ion imbalance and ROS accumulation under salt stress. Transcriptomic profiles of snat1snat2 revealed that the expression of a large number of salt-responsive genes was affected by SNAT defect, and these genes were closely related to the synthesis of auxin and several signaling pathways. In addition, the salt-sensitive growth phenotype of snat1snat2 was alleviated by the application of exogenous auxin. Our results show that endogenous melatonin may be essential for plant salt tolerance, a function that could be correlated with diverse activity in mediating auxin signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the supplementary materials or from the corresponding author upon reasonable request.

References

  • Ahanger MA, Tomar NS, Tittal M, Argal S, Agarwal RM (2017) Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol Mol Biol Plants 23(1):731–744

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2014) Melatonin: plant growth regulator and/or biostimulator during stress? Trends Plant Sci 19(12):789–797

    Article  PubMed  CAS  Google Scholar 

  • Bai Y, Guo J, Reiter RJ, Wei Y, Shi H (2020) Melatonin synthesis enzymes interact with ascorbate peroxidase to protect against oxidative stress in cassava. J Exp Bot 71(18):5645–5655

    Article  PubMed  CAS  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65(5):1229–1240

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Xie Y, Gu Q, Zhao G, Zhang Y, Cui W, Xu S, Wang R, Shen W (2017) The AtrbohF-dependent regulation of ROS signaling is required for melatonin-induced salinity tolerance in Arabidopsis. Free Radic Biol Med 108:465–477

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Liu L, Lu B, Ma T, Li C (2020) Exogenous melatonin promotes seed germination and osmotic regulation under salt stress in cotton (Gossypium hirsutum L.). PLoS ONE 15(1):e0228241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan J, Xie Y, Zhang Z, Chen L (2018) Melatonin: a multifunctional factor in plants. Int J Mol Sci 19(5):1528

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella RL, Xu G, Chao D-Y, Li J, Wang P-Y, Qin F, Li J, Ding Y, Shi Y, Wang Y, Yang Y, Guo Y, Zhu J-K (2020) Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci 63(5):635–1674

    Article  PubMed  Google Scholar 

  • Ibrahim MH, Jaafar HZ (2012) Primary, secondary metabolites, H2O2, malondialdehyde and photosynthetic responses of Orthosiphon stamineus Benth. to different irradiance levels. Molecules 17:1159–1176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang K, Lee K, Park S, Kim YS, Back K (2010) Enhance dproductionof melatonin by ectopic overexpression of human serotonin N-acetyltransferase plays a role in cold resistance intransgenic rice seedlings. J Pineal Res 49:176–182

    PubMed  CAS  Google Scholar 

  • Ke Q, Ye J, Wang B, Ren J, Yin L, Deng X, Wang S (2018) Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism. Front Plant Sci 9:914

    Article  PubMed  PubMed Central  Google Scholar 

  • Korver RA, Koevoets IT, Testerink C (2018) Out of shape during stress: a key role for auxin. Trends Plant Sci 23(9):783–793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee K, Back K (2017) Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield. J Pineal Res 62:e12392

    Article  Google Scholar 

  • Lee HY, Byeon Y, Lee K, Hye-Jung L, Back K (2016) Cloning of Arabidopsis serotonin N-acetyltransferase and its role with caffeic acid O-methyltransferase in the biosynthesis of melatonin in vitro despite their different subcellular localizations. J Pineal Res 57(4):418–426

    Article  Google Scholar 

  • Lerner AB, Case JD, Takahashi Y, Lee Y, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 80(2):2587

    Article  CAS  Google Scholar 

  • Li J, Yang Y, Sun K, Chen Y, Chen X, Li X (2019) Exogenous melatonin enhances cold, salt and drought stress tolerance by improving antioxidant defense in tea plant (Camellia sinensis (L.) O. Kuntze). Molecules 24(9):182

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang C, Zheng G, Li W, Wang Y, Hu B, Wang H, Wu H, Qian Y, Zhu XG, Tan DX (2015) Melatonin delays leaf senescence and enhances salt stress tolerance in rice. J Pineal Res 59(1):91–101

    Article  PubMed  CAS  Google Scholar 

  • Miao RQ, Zang W, Yuan Y, Zhang Y, Zhang AQ, Pang QY (2021) The halophyte gene ScVTC2 confers resistance to oxidative stress via AsA-mediated photosynthetic enhancement. Plant Physiol Biochem 169:138–148

    Article  PubMed  CAS  Google Scholar 

  • Muhammad I, Yang L, Ahmad S, Mosaad ISM, Al-Ghamdi AA, Abbasi AM, Zhou XB (2022) Melatonin application alleviates stress-induced photosynthetic inhibition and oxidative damage by regulating antioxidant defense system of maize: a meta-analysis. Antioxidants (basel, Switzerland) 11(3):1059–1072

    Google Scholar 

  • Mukesh KK, Yu J, Zhou J (2018) Phytomelatonin: recent advances and future prospects. J Pineal Res 65(4):e12526

    Article  Google Scholar 

  • Murch SJ, Krishnaraj S, Saxena PK (2000) Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John’s wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Rep 19(7):698–704

    Article  PubMed  CAS  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res Int 22(6):4056–4076

    Article  PubMed  CAS  Google Scholar 

  • Park HJ, Kim W-Y, Yun D-J (2016) A new insight of salt stress signaling in plant. Mol Cells 39(6):447–459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qi C, Zhang H, Liu Y, Wang X, Dong D, Yuan X, Li X, Zhang X, Li X, Zhang N, Guo Y-D (2020) CsSNAT positively regulates salt tolerance and growth of cucumber by promoting melatonin biosynthesis. Environ Exp Bot 175:104036

    Article  CAS  Google Scholar 

  • Ribba T, Garrido-Vargas F, O’Brien JA (2020) Auxin-mediated responses under salt stress: from developmental regulation to biotechnological applications. J Exp Bot 71(13):3843–3853

    Article  PubMed  CAS  Google Scholar 

  • Song Z, Yang Q, Dong B, Li N, Wang M, Du T, Liu N, Niu L, Jin H, Meng D (2022) Melatonin enhances stress tolerance in pigeon pea by promoting flavonoid enrichment, particularly luteolin in response to salt stress. J Exp Bot 73(17):5992–6008

    Article  PubMed  Google Scholar 

  • Su J, Yang X, Shao Y, Chen Z, Shen W (2020) Molecular hydrogen–induced salinity tolerance requires melatonin signalling in Arabidopsis thaliana. Plant Cell Environ 44(2):476–490

    Article  PubMed  Google Scholar 

  • Tan D, Hardeland R, Back K, Manchester LC, Alatorre-Jimenez M, Reiter RJ (2016) On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species. J Pineal Res 61(1):27–40

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Sun X, Li C, Wei Z, Liang D, Ma F, Expand A (2012) Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J Pineal Res 54(3):292–302

    Article  PubMed  Google Scholar 

  • Wang X, Zhang H, Xie Q, Liu Y, Lv H, Bai R, Ma R, Li X, Zhang X, Guo Y-D, Zhang N (2020) SlSNAT interacts with HSP40, a molecular chaperone, to regulate melatonin biosynthesis and promote thermotolerance in tomato. Plant Cell Physiol 61(5):909–921

    Article  PubMed  CAS  Google Scholar 

  • Wei W, Tao JJ, Yin CC, Chen SY, Zhang JS, Zhang WK (2022) Melatonin regulates gene expressions through activating auxin synthesis and signaling pathways. Front Plant Sci 13:1057993

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu D, Wen Z, Cuicui W, Qingwei M, Gang L (2017) Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants. Plant Sci 275:74–83

    Google Scholar 

  • Wu Y, Fan X, Zhang Y, Jiang J, Sun L, UrRahman F, Liu C (2021) VvSNAT1 overexpression enhances melatonin production and salt tolerance in transgenic Arabidopsis. Plant Physiol Biochem 166:485–494

    Article  PubMed  CAS  Google Scholar 

  • Yan F, Zhang J, Li W, Ding Y, Li G (2021) Exogenous melatonin alleviates salt stress by improving leaf photosynthesis in rice seedlings. Plant Physiol Biochem 163:367–375

    Article  PubMed  CAS  Google Scholar 

  • Yicheng Y, Aimin W, Xiang L, Meng K, Wenjun W, Xianyang C, Tao X, Mingku Z, Daifu M, Zongyun L (2018) Melatonin-stimulated triacylglycerol breakdown and energy turnover under salinity stress oontributes to the maintenance of plasma membrane H+–ATPase activity and K+/Na+ homeostasis in sweet potato. Front Plant Sci 9:256

    Article  Google Scholar 

  • Yu Y, Bian L, Jiao Z, Yu K, Wan Y, Zhang G, Guo D (2019) Molecular cloning and characterization of a grapevine (Vitis vinifera L.) serotonin N-acetyltransferase (VvSNAT2) gene involved in plant defense. BMC Genomics 20(1):880

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Gao W, Lv Y, Bai Q, Wang Y (2018) Exogenous melatonin confers salt stress tolerance to Chlamydomonas reinhardtii (Volvocales, Chlorophyceae) by improving redox homeostasis. Phycologia 57(6):680–691

    Article  CAS  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zia SF, Berkowitz O, Bedon F, Whelan J, Franks AE, Plummer KM (2019) Direct comparison of Arabidopsis gene expression reveals different responses to melatonin versus auxin. BMC Plant Biol 19(1):567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 32100298 and No. 32070350), The Excellent Youth Project of Natural Science Foundation of Heilongjiang Province (YQ2021C001) and The Fundamental Research Funds for the Central Universities (No. 2572022AW63). We would like to thank Dr Alan K Chang (Wenzhou University) for his helpful discussion and kind effort in revising the language of the manuscript.

Funding

This study was funded by the National Natural Science Foundation of China (No. 32100298 and No. 32070350), The Excellent Youth Project of Natural Science Foundation of Heilongjiang Province (YQ2021C001) and The Fundamental Research Funds for the Central Universities (No. 2572022AW63).

Author information

Authors and Affiliations

Authors

Contributions

AQZ and QYP designed the experiments and supervised the research. RQM, ZQL, YY and XFY performed the experiments and analyzed the data. RQM and AQZ wrote the manuscript with contributions from other authors.

Corresponding authors

Correspondence to Qiuying Pang or Aiqin Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Xian Sheng Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 224 KB)

Supplementary file2 (PPTX 2168 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, R., Li, Z., Yuan, Y. et al. Endogenous melatonin involved in plant salt response by impacting auxin signaling. Plant Cell Rep 43, 33 (2024). https://doi.org/10.1007/s00299-023-03097-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00299-023-03097-4

Keywords

Navigation