Skip to main content
Log in

Analysis on the salt tolerance of Nitraria sibirica Pall. based on Pacbio full-length transcriptome sequencing

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Nitraria sibirica Pall. regulates its tolerance to salt stress mainly by adjusting ion balance, modifying cell wall structure, and activating signal transduction pathways.

Abstract

N. sibirica, as a typical halophyte, can not only effectively restore saline-alkali land, but also has high economic value. However, studies on its salt tolerance at combining molecular and physiological levels were limited. In this study, the salt tolerance of N. sibirica was analyzed based on Pacbio full-length transcriptome sequencing, and the salt tolerance in the physiological level was verified by key genes. The results showed that 89,017 full-length transcripts were obtained, of which 84,632 sequences were annotated. A total of 86,482 coding sequences (CDS) were predicted and 6561 differentially expressed genes (DEGs) were identified. DEGs were significantly enriched in “sodium ion homeostasis”, “response to osmotic stress”, “reactive oxygen species metabolic process”, “defense response by cell wall thickening”, “signal transduction”, etc. The expression levels for most of these DEGs increased under salt stress. A total of 69 key genes were screened based on weighted gene co-expression network analysis (WGCNA), of which 33 were first reported on salt tolerance. Moreover, NsRabE1c gene with the highest expression level was selected to verify its salt tolerance. Over-expression of NsRabE1c gene enhanced the germination potential and root length of transgenic Arabidopsis thaliana plants without salt treatment as compared to those of Col-0 and AtRabE1c mutant. The expression levels of NsRabE1c decreased in the growth stagnation phase, while significantly increased in the growth recovery phase under salt stress. We predicted that NsRabE1c gene help N. sibirica resist salt stress through the regulation of plant growth. The results of this study deepen the understanding of salinity resistance in N. sibirica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Ahanger MA, Aziz U, Alsahli AA et al (2020) (2019) Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis. Biomolecules 10(1):42

    Article  CAS  Google Scholar 

  • Ahmad P, Latef AAA, Hashem A et al (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7(868):347

    PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Ahanger MA, Alyemeni MN et al (2018) Mitigation of sodium chloride toxicity in Solanum lycopersicum L. by supplementation of jasmonic acid and nitric oxide. J Plant Interact 13(1):64–72

    Article  CAS  Google Scholar 

  • Bacete L, Schulz J, Engelsdorf T et al (2022) THESEUS1 modulates cell wall stiffness and abscisic acid production in Arabidopsis thaliana. P Nati Acad Sci 119(1):e2119258119

    Article  CAS  Google Scholar 

  • Bargmann BOR, Laxalt AM, ter Riet B et al (2009) Multiple PLDs required for high salinity and water deficit tolerance in plants. Plant Cell Physiol 50(1):78–89

    Article  CAS  PubMed  Google Scholar 

  • Bassil E, Tajima H, Liang YC et al (2011) The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell 23(9):3482–3497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, He L, Lin M et al (2021) A ras-related small GTP-binding protein, RabE1c, regulates stomatal movements and drought stress responses by mediating the interaction with ABA receptors. Plant Sci 306:110858

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2006) Salt stress signaling and mechanisms of plant salt tolerance. Genet Eng 27:141–177

    Article  CAS  Google Scholar 

  • Decreux A, Messiaen J (2005) Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant Cell Physiol 46(2):268–278

    Article  CAS  PubMed  Google Scholar 

  • Dong L, Liu H, Zhang J et al (2015) Single-molecule real-time transcript sequencing facilitates common wheat genome annotation and grain transcriptome research. BMC Genomics 16:1039

    Article  PubMed  PubMed Central  Google Scholar 

  • Duszyn M, Świeżawska B, Szmidt-Jaworska A et al (2019) Cyclic nucleotide gated channels (CNGCs) in plant signalling—current knowledge and perspectives. J Plant Physiol 241:153035

    Article  CAS  PubMed  Google Scholar 

  • Engelsdorf T, Gigli-Bisceglia N, Veerabagu M et al (2018) The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana. Sci Signal. https://doi.org/10.1126/scisignal.aao3070

    Article  PubMed  Google Scholar 

  • Faizan M, Bhat JA, Chen C et al (2021) Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiolo Bioch 161(4):122–130

    Article  CAS  Google Scholar 

  • Feng W, Kita D, Peaucelle A et al (2018) The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr Biol 28(5):666–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, He X, Zhao B et al (2010) Overexpressing a putative aquaporin gene from wheat, TaNIP, enhances salt tolerance in transgenic Arabidopsis. Plant Cell Physiol 51(5):767–775

    Article  CAS  PubMed  Google Scholar 

  • Geng X, Lou J, Tie Y et al (2018) Isolation and expression analysis of plasmalemma Na+/H+ antiporter gene from Nitraria sibirica. Acta Bot Boreal-Occident Sin 38:1428–1436 ((in Chinese))

    Google Scholar 

  • Gigli-Bisceglia N, van Zelm E, Huo W et al (2020) Salinity stress-induced modification of pectin activates stress signaling pathways and requires HERK/THE and FER to attenuate the response. BioRxiv 10(18):423458

    Google Scholar 

  • Han X, Yang Y (2021) Phospholipids in salt stress response. Plants 10(10):2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill AE, Shachar-Hill Y (2015) Are aquaporins the missing transmembrane osmosensors? J Membrane Biol 248(4):753–765

    Article  CAS  Google Scholar 

  • Hirano T, Sato MH (2011) Arabidopsis FAB1A/B is possibly involved in the recycling of auxin transporters. Plant Signal Behav 6(4):583–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunkeler AK (2021) PTEN-mediated intracellular trafficking is crucial for xylem differentiation in Arabidopsis thaliana roots. Dissertation, ETH Zürich

  • Jin H, Dong D, Yang Q et al (2016) Salt-responsive transcriptome profiling of Suaeda glauca via RNA sequencing. PLoS One 11(3):e0150504

    Article  PubMed  PubMed Central  Google Scholar 

  • Karahara I, Ikeda A, Kondo T et al (2004) Development of the Casparian strip in primary roots of maize under salt stress. Planta 219(1):41–47

    Article  CAS  PubMed  Google Scholar 

  • Katiyar-Agarwal S, Zhu J, Kim K et al (2006) The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. P Nati Acad Sci 103:18816–18821

    Article  CAS  Google Scholar 

  • Kaya C, Higgs D, Ashraf M et al (2020) Integrative roles of nitric oxide and hydrogen sulfide in melatonin-induced tolerance of pepper (Capsicum annuum L.) plants to iron deficiency and salt stress alone or in combination. Physiol Plantarum 168(2):256–277

    Article  CAS  Google Scholar 

  • Kim SH, Woo DH, Kim JM et al (2011) Arabidopsis MKK4 mediates osmotic-stress response via its regulation of MPK3 activity. Biochem Bioph Res Co 412:150–154

    Article  CAS  Google Scholar 

  • Kong X, Pan J, Zhang M et al (2011) ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant Cell Environ 34:1291–1303

    Article  CAS  PubMed  Google Scholar 

  • Kronzucker HJ, Britto DT (2011) Sodium transport in plants: a critical review. New Phytol 189:54–81

    Article  CAS  PubMed  Google Scholar 

  • Kumar MN, Jane WN, Verslues PE (2013) Role of the putative osmosensor Arabidopsis histidine kinase1 in dehydration avoidance and low-water-potential response. Plant Physiol 161(2):942–953

    Article  CAS  PubMed  Google Scholar 

  • Li Y (2008) Kinetics of the antioxidant response to salinity in the halophyte Limonium bicolor. Plant Soil Environ 54:493–497

    Article  CAS  Google Scholar 

  • Li C (2016) Cloning and characterization of high-affinity K+ transporter gene from nitraria sibirica pall. Dissertation, Inner Mongolia University (in Chinese)

  • Li H, Tang X, Yang X et al (2017a) De novo transcriptome characterization, gene expression profiling and ionic responses of Nitraria sibirica Pall. under salt stress. Forests 8(6):211

    Article  Google Scholar 

  • Li W, Xu G, Alli A et al (2017b) Plant HAK/KUP/KT K+ transporters: function and regulation. Semin Cell Dev Biol 74:133–141

    Article  PubMed  Google Scholar 

  • Li R, Chai W, Guo X et al (2020) Effect of salt treatment on osmotic adjustment of Apocynum venetum seedlings. Mol Plant Breeding 12:4105–4110 ((in Chinese))

    Google Scholar 

  • Li H, Tang X, Yang X et al (2021) Comprehensive transcriptome and metabolome profiling reveal metabolic mechanisms of Nitraria sibirica Pall. to salt stress. Sci Rep 11:12878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Guo Y, Yang Y (2022) The molecular mechanism of plasma membrane H+-ATPases in plant responses to abiotic stress. J Genet Genomics 49(8):715–725

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Wu J, Jiang M et al (2021) Plant mitogen-activated protein kinase cascades in environmental stresses. Int J Mol Sci 22(4):1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Zhang W, Long S et al (2021a) Maintenance of cell wall integrity under high salinity. Int J Mol Sci 22(6):3260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Wang H, Wang X et al (2021b) Alleviating effect of exogenous GABA on injury of Nitraria siberia Pall. seedlings induced by salt stress. J Northeast Agr Univ 52:34–40 ((in Chinese))

    CAS  Google Scholar 

  • Luo Y, Zhuo W, Chen Q et al (2019) Cloning and expression patterns analysis of NtNHX2 gene in Nicotiana tabacum under different stress. Mol Plant Breed 17(16):5224–5229 ((in Chinese))

    Google Scholar 

  • Lv S, Jiang P, Tai F et al (2017) The V-ATPase subunit A is essential for salt tolerance through participating in vacuolar Na+ compartmentalization in Salicornia europaea. Planta 246:1177–1187

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Liu X, Lv W et al (2022) Molecular mechanisms of plant responses to salt stress. Front Plant Sci 13:934877

    Article  PubMed  PubMed Central  Google Scholar 

  • Menga V, Trono D (2020) The molecular and functional characterization of the durum wheat Lipoxygenase TdLOX2 suggests its role in hyperosmotic stress response. Plants 9:1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monniaux M, Hay A (2016) Cells, walls, and endless forms. Curr Opin Plant Biol 34:114–121

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nadarajah KK (2020) ROS homeostasis in abiotic stress tolerance in plants. Int J Mol Sci 21:5208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni L, Wang Z, Guo J et al (2021) Full-length transcriptome sequencing and comparative transcriptome analysis to evaluate drought and salt stress in Iris lactea var. chinensis. Genes 12:434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieves-Cordones M, Alemán F, Martínez V et al (2014) K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. J Plant Physiol 171:688–695

    Article  CAS  PubMed  Google Scholar 

  • Ning J, Li X, Hicks LM et al (2010) A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol 152:876–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nongpiur RC, Singla-Pareek SL, Pareek A (2020) The quest for osmosensors in plants. J Exp Bot 71:595–607

    Article  CAS  PubMed  Google Scholar 

  • Orr RG, Furt F, Warner EL et al (2021) Rab-E and its interaction with myosin XI are essential for polarised cell growth. New Phytol 229(4):1924–1936

    Article  CAS  PubMed  Google Scholar 

  • Pantha P, Dassanayake M (2020) Living with salt. Innovation 1(3):100050

    PubMed  PubMed Central  Google Scholar 

  • Raja KV, Sekhar KM, Reddy VD et al (2021) Activation of CDC48 and acetyltransferase encoding genes contributes to enhanced abiotic stress tolerance and improved productivity traits in rice. Plant Physiol Bioch 168:329–339

    Article  CAS  Google Scholar 

  • Scholz P, Pejchar P, Fernkorn M et al (2022) Diacylglycerol kinase 5 regulates polar tip growth of tobacco pollen tubes. New Phytol 233(5):2185–2202

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Chen SL, Dai SX et al (2009) Ion flux profiles and plant ion homeostasis control under salt stress. Plant Signal Behav 4:261–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun M, Huang D, Zhang A et al (2020) Transcriptome analysis of heat stress and drought stress in pearl millet based on Pacbio full-length transcriptome sequencing. BMC Plant Biol 20:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun S, Lin M, Qi X et al (2021) Full-length transcriptome profiling reveals insight into the cold response of two kiwifruit genotypes (A. arguta) with contrasting freezing tolerances. BMC Plant Biol 21:365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi F, Mizoguchi T, Yoshida R et al (2011) Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Mol Cell 41:649–660

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Yang X, Li H et al (2018) Maintenance of K+/Na+ balance in the roots of Nitraria sibirica Pall. in response to NaCl stress. Forests 9:601

    Article  Google Scholar 

  • Tang X, Zhang H, Shabala S et al (2021) Tissue tolerance mechanisms conferring salinity tolerance in a halophytic perennial species Nitraria sibirica Pall. Tree Physiol 41:1264–1277

    Article  CAS  PubMed  Google Scholar 

  • Teige M, Scheikl E, Eulgem T et al (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    Article  CAS  PubMed  Google Scholar 

  • Tiika RJ, Wei J, Cui G et al (2021) Transcriptome-wide characterization and functional analysis of xyloglucan endo-transglycosylase/hydrolase (XTH) gene family of Salicornia europaea L. under salinity and drought stress. BMC Plant Biol 21:491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran LSP, Urao T, Qin F et al (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. P Nati A Sci 104:20623–20628

    Article  CAS  Google Scholar 

  • van Zelm E, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. Annu Rev Plant Biol 71:403–433

    Article  PubMed  Google Scholar 

  • Wang J, Ding H, Zhang A et al (2010) A novel mitogen-activated protein kinase gene in maize (Zea mays), ZmMPK3, is involved in response to diverse environmental cues. J Integr Plant Biol 52:442–452

    CAS  PubMed  Google Scholar 

  • Wang L, Ma YK, Li NN et al (2016) Isolation and characterization of a tonoplast Na+/H+ antiporter from the halophyte Nitraria sibirica. Biol Plantarum 60:113–122

    Article  CAS  Google Scholar 

  • Wang X, Yan YQ, Yin Y et al (2019) Effect of exogenous γ-aminobutyric acid (GABA) on photosynthetic characteristics of Nitraria sibirica pall. under salt stress. Jiangsu J Agr Sci 35:1032–1039 ((in Chinese))

    Google Scholar 

  • Wang X, Zhou Y, Xu Y et al (2021) A novel gene LbHLH from the halophyte Limonium bicolor enhances salt tolerance via reducing root hair development and enhancing osmotic resistance. BMC Plant Biol 21:284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei J, Tiika RJ, Cui G et al (2022) Transcriptome-wide identification and expression analysis of the KT/HAK/KUP family in Salicornia europaea L. under varied NaCl and KCl treatments. PeerJ 10:e12989

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu F, Chi Y, Jiang Z et al (2020) Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature 578:577–581

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Wang M, Ren T et al (2021) Comparative transcriptome analysis reveals the molecular mechanism of salt tolerance in Apocynum venetum. Plant Physiol Bioch 167:816–830

    Article  CAS  Google Scholar 

  • Yang Y, Guo Y (2018a) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217:523–539

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Guo Y (2018b) Unraveling salt stress signaling in plants. J Integr Plant Biol 60:796–804

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Duan X, Luo L et al (2020) How plant hormones mediate salt stress responses. Trends Plant Sci 25:1117–1130

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Wu W, Zhang N et al (2022) Research advances on molecular mechanism of salt tolerance in Suaeda. Biology 11:1273

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan F, Yang H, Xue Y et al (2014) OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514(7522):367–371

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Du C, Wang Y et al (2016a) The reaumuria trigyna leucoanthocyanidin dioxygenase (RtLDOX) gene complements anthocyanidin synthesis and increases the salt tolerance potential of a transgenic Arabidopsis LDOX mutant. Plant Physiol Bioch 106:278–287

    Article  CAS  Google Scholar 

  • Zhang M, Smith JAC, Harberd NP et al (2016b) The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses. Plant Mol Biol 91(6):651–659

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Li Y, Liu B et al (2018) Characterization of the Populus Rab family genes and the function of PtRabE1b in salt tolerance. BMC Plant Biol 18(1):124

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Zhang H, Song C et al (2020) Mechanisms of plant responses and adaptation to soil salinity. Innovation 1:100017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Zhang Q, Liu M et al (2021a) Regulation of plant responses to salt stress. Int J Mol Sci 22:4609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Liu W, Wang H et al (2021b) Effects of exogenous CaCl2 on reactive oxygen species metabolism in Nitraria sibirica under NaCl stress. Plant Physiol J 57:1105–1112 ((in Chinese))

    Google Scholar 

  • Zhu Y, Wang Q, Gao Z et al (2021) Analysis of phytohormone signal transduction in Sophora alopecuroides under salt stress. Int J Mol Sci 22:7313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural. Science Foundation of China (31770437). We thank Xu Yan in Huazhong Agricultural University for technical support in the analysis of the transcriptome sequencing data.

Funding

This work was supported by the Natural Science Foundation of China (31770437).

Author information

Authors and Affiliations

Authors

Contributions

PZ and YY designed the experiments. PZ and FZ performed most of the experiments. ZW and SC extracted the RNA and conducted the transgenic experiments. PZ and WL wrote the original draft. FZ, WL and YY revised the paper. All authors have read and approved to the published version of the manuscript.

Corresponding authors

Correspondence to Wei Liu or Yongqing Yan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Communicated by Sheng Ying.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 95 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Zhang, F., Wu, Z. et al. Analysis on the salt tolerance of Nitraria sibirica Pall. based on Pacbio full-length transcriptome sequencing. Plant Cell Rep 42, 1665–1686 (2023). https://doi.org/10.1007/s00299-023-03052-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-023-03052-3

Keywords

Navigation