Skip to main content

Advertisement

Log in

Co-transient expression of PSA-Fc and PAP-Fc fusion protein in plant as prostate cancer vaccine candidates and immune responses in mice

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

PAP-FcK and PSA-FcK prostate cancer antigenic proteins transiently co-expressed in plant induce their specific humoral immune responses in mice.

Abstract

Prostate-specific antigen (PSA) and prostatic acid phosphatase (PAP) have been considered as immunotherapeutic antigens for prostate cancer. The use of a single antigenic agent is unlikely to be effective in eliciting immunotherapeutic responses due to the heterogeneous and multifocal nature of prostate cancer. Thus, multiple antigens have been combined to enhance their anti-cancer effects. In the current study, PSA and PAP were fused to the crystallizable region (Fc region) of immunoglobulin G1 and tagged with KDEL, the endoplasmic reticulum (ER) retention signal motif, to generate PSA-FcK and PAP-FcK, respectively, and were transiently co-expressed in Nicotiana benthamiana. Western blot analysis confirmed the co-expression of PSA-FcK and PAP-FcK (PSA-FcK + PAP-FcK) with a 1:3 ratios in the co-infiltrated plants. PSA-FcK, PAP-FcK, and PSA-FcK + PAP-FcK proteins were successfully purified from N. benthamiana by protein A affinity chromatography. ELISA showed that anti-PAP and anti-PSA antibodies successfully detected PAP-FcK and PSA-FcK, respectively, and both detected PSA-FcK + PAP-FcK. Surface plasmon resonance (SPR) analysis confirmed the binding affinity of the plant-derived Fc fusion proteins to FcγRI/CD64. Furthermore, we also confirmed that mice injected with PSA-FcK + PAP-FcK produced both PSA- and PAP-specific IgGs, demonstrating their immunogenicity. This study suggested that the transient plant expression system can be applied to produce the dual-antigen Fc fusion protein (PSA-FcK + PAP-FcK) for prostate cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Non-applicable.

References

  • Arcalis E, Stadlmann J, Rademacher T, Marcel S, Sack M, Altmann F, Stoger E (2013) Plant species and organ influence the structure and subcellular localization of recombinant glycoproteins. Plant Mol Biol 83(1–2):105–117

    Article  CAS  PubMed  Google Scholar 

  • Balk SP, Ko Y-J, Bubley GJ (2003) Biology of prostate-specific antigen. J Clin Oncol 21(2):383–391

    Article  CAS  PubMed  Google Scholar 

  • Beck A, Reichert JM (2011) Therapeutic Fc-fusion proteins and peptides as successful alternatives to antibodies. Mabs 3(5):415–416. https://doi.org/10.4161/mabs.3.5.17334

    Article  PubMed  PubMed Central  Google Scholar 

  • Bicknell AA, Ricci EP (2017) When mRNA translation meets decay. Biochem Soc Trans 45(2):339–351

    Article  CAS  PubMed  Google Scholar 

  • Correale P, Nieroda C, Zaremba S, Zhu M, Schlom J, Tsang KY, Konstantin W (1997) In vitro generation of human cytotoxic T lymphocytes specific for peptides derived from prostate-specific antigen. J Natl Cancer Inst 89(4):293–300

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Singh ND, Mason H, Streatfield SJ (2009) Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci 14(12):669–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Meyer T, Depicker A (2014) Trafficking of endoplasmic reticulum-retained recombinant proteins is unpredictable in Arabidopsis thaliana. Front Plant Sci 5:473

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang J, Hu B, Li S, Zhang C, Liu Y, Wang P (2016) A multi-antigen vaccine in combination with an immunotoxin targeting tumor-associated fibroblast for treating murine melanoma. Mol Ther-Oncolytics 3:16007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farsiani H, Mosavat A, Soleimanpour S, Sadeghian H, Eydgahi MRA, Ghazvini K, Rezaee SA (2016) Fc-based delivery system enhances immunogenicity of a tuberculosis subunit vaccine candidate consisting of the ESAT-6: CFP-10 complex. Mol BioSyst 12(7):2189–2201

    Article  CAS  PubMed  Google Scholar 

  • Fay EK, Graff JN (2020) Immunotherapy in prostate cancer. Cancers 12(7):1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilliams M, Bruhns P, Saeys Y, Hammad H, Lambrecht BN (2014) The function of Fcγ receptors in dendritic cells and macrophages. Nat Rev Immunol 14(2):94–108

    Article  CAS  PubMed  Google Scholar 

  • Gulley J, Chen AP, Dahut W, Arlen PM, Bastian A, Steinberg SM, Schlom J (2002) Phase I study of a vaccine using recombinant vaccinia virus expressing PSA (rV-PSA) in patients with metastatic androgen-independent prostate cancer. Prostate 53(2):109–117

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Carballido E, Fishman M (2011) Sipuleucel-T for therapy of asymptomatic or minimally symptomatic, castrate-refractory prostate cancer: an update and perspective among other treatments. Onco Targets Ther 4:79

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ha JH, Kim J-E, Kim YS (2016) Immunoglobulin Fc heterodimer platform technology: from design to applications in therapeutic antibodies and proteins. Front Immunol 6:394

    Google Scholar 

  • Holtrop T, Budding K, Brandsma AM, Leusen JHW (2022) Targeting the high affinity receptor, FcγRI, in autoimmune disease, neuropathy, and cancer. Immunotherapy Advances 2:1–11

    Article  Google Scholar 

  • Karan D (2013) Prostate immunotherapy: should all guns be aimed at the prostate-specific antigen? Immunotherapy 5(9):907–910

    Article  CAS  PubMed  Google Scholar 

  • Karan D (2017) Formulation of the bivalent prostate cancer vaccine with surgifoam elicits antigen-specific effector T cells in PSA-transgenic mice. Vaccine 35(43):5794–5798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karan D, Dubey S, Van Veldhuizen P, Holzbeierlein JM, Tawfik O, Thrasher JB (2011) Dual antigen target-based immunotherapy for prostate cancer eliminates the growth of established tumors in mice. Immunotherapy 3(6):735–746

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Kang YJ, Park SR, Kim DS, Leee SW, Ko K, Ponndord D, Ko K (2021) Effect of leaf position and days post-infiltration on transient expression of colorectal cancer vaccine candidate proteins GA733-Fc and GA733-FcK in Nicotiana benthamiana plant. PeerJ 9:e10851

    Article  PubMed  PubMed Central  Google Scholar 

  • Ko K, Koprowski H (2005) Plant biopharming of monoclonal antibodies. Virus Res 111(1):93–100

    Article  CAS  PubMed  Google Scholar 

  • Kong Z, Wang Y, Ma W (2018) Vaccination in the immunotherapy of glioblastoma. Hum Vaccin Immunother 14(2):255–268

    Article  PubMed  Google Scholar 

  • Kristen Davis M, Sarah Wood R, Emily Dill R, Fesko Y, Bitting RL, Harrison MR, George DJ (2015) Optimizing the efficiency and quality of sipuleucel-T delivery in an academic institution. Clin J Oncol Nurs 19(3):297

    Article  PubMed  Google Scholar 

  • Levin D, Golding B, Strome SE, Sauna ZE (2015) Fc fusion as a platform technology: potential for modulating immunogenicity. Trends Biotechnol 33(1):27–34

    Article  CAS  PubMed  Google Scholar 

  • Lim CY, Kim DS, Kang Y, Lee YR, Kim K, Kim MS, Ko K (2022) Immune responses to plant-derived recombinant colorectal cancer glycoprotein EpCAM-FcK fusion protein in mice. Biomol Ther 30(6):546–552

    Article  CAS  Google Scholar 

  • Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X (2022) Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol 15:1–28

    Article  Google Scholar 

  • Lu Z, Lee K-J, Shao Y, Lee J-H, So Y, Choo Y-K, Han YS (2012) Expression of GA733-Fc fusion protein as a vaccine candidate for colorectal cancer in transgenic plants. J Biomed Biotechnol. https://doi.org/10.1155/2012/364240

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma L, Lukasik E, Gawehns F, Takken FL (2012) The use of agroinfiltration for transient expression of plant resistance and fungal effector proteins in Nicotiana benthamiana leaves. Plant fungal pathogens. Springer, pp 61–74

    Chapter  Google Scholar 

  • Madan RA, Gulley JL, Kantoff PW (2013) Demystifying immunotherapy in prostate cancer: understanding current and future treatment strategies. Cancer J (sudbury, Mass) 19(1):50

    Article  CAS  Google Scholar 

  • Naalden D, Verbeek R, Gheysen G (2018) Nicotiana benthamiana as model plant for Meloidogyne graminicola infection. Nematology 20(5):491–499

    Article  Google Scholar 

  • Narula A, Ellis J, Taliaferro JM, Rissland OS (2019) Coding regions affect mRNA stability in human cells. RNA 25(12):1751–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norkunas K, Harding R, Dale J, Dugdale B (2018) Improving agroinfiltration-based transient gene expression in Nicotiana benthamiana. Plant Methods 14(1):71

    Article  PubMed  PubMed Central  Google Scholar 

  • Prado GS, Bamogo PKA, de Abreu JAC, Gillet F-X, dos Santos VO, Silva MCM, Brugidou C (2019) Nicotiana benthamiana is a suitable transient system for high-level expression of an active inhibitor of cotton boll weevil α-amylase. BMC Biotechnol 19(1):1–13

    Article  Google Scholar 

  • Rath T, Baker K, Dumont JA, Peters RT, Jiang H, Qiao S-W, Blumberg RS (2015) Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics. Crit Rev Biotechnol 35(2):235–254

    Article  CAS  PubMed  Google Scholar 

  • Roos AK, Pavlenko M, Charo J, Egevad L, Pisa P (2005) Induction of PSA-specific CTLs and anti-tumor immunity by a genetic prostate cancer vaccine. Prostate 62(3):217–223

    Article  CAS  PubMed  Google Scholar 

  • Sahin U, Oehm P, Derhovanessian E et al (2020) An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585:107–112

    Article  CAS  PubMed  Google Scholar 

  • Saif JM, Vadakekolathu J, Rane SS, McDonald D, Ahmad M, Mathieu M, Rees RC (2014) Novel prostate acid phosphatase-based peptide vaccination strategy induces antigen-specific T-cell responses and limits tumour growth in mice. Eur J Immunol 44(4):994–1004

    Article  CAS  PubMed  Google Scholar 

  • Sainbury F, Thuenemann EC, Lomonossoff GP (2009) pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J 7:682–693

    Article  Google Scholar 

  • Schatz A, Mian BM (2019) Current and emerging trends in prostate cancer immunotherapy. Asian J Androl 21(1):6

    Article  CAS  Google Scholar 

  • Shanmugaraj B, Bulaon CJI, Phoolcharoen W (2020) Plant molecular farming: a viable platform for recombinant biopharmaceutical production. Plants 9(7):842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin CH, Kang YJ, Soo KH, Kyoo SY, Ko K (2019) Immune response of heterologous recombinant antigenic protein of viral hemorrhagic septicemia virus (VHSV) in mice. Animal Cells Syst 23(2):97–105

    Article  CAS  Google Scholar 

  • Shin CH, Kim K, Kang YJ, Kim D-S, Seo Y-J, Park SR, Kim MK, Lee YK, Kim D-S, Ko K (2022) Effect of IgG Fc-fusion and KDEL-ER retention signal on prostate-specific antigen expression in plant and its immune in mice. Plant Biotechnol Rep 16:729–740

    Article  CAS  Google Scholar 

  • Singh BH, Gulley JL (2014) Therapeutic vaccines as a promising treatment modality against prostate cancer: rationale and recent advances. Ther Adv Vaccines 2(5):137–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song I, Lee YK, Kim JW et al (2021) Effect of an endoplasmic reticulum retention signal tagged to human anti-rabies mAb SO57 on its expression in Arabidopsis and plant growth. Mol Cells 44(10):770–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorne H, Willems AJ, Niedermayr E, Hoh IM, Li J, Clouston D, Bolton D (2011) Decreased prostate cancer-specific survival of men with BRCA2 mutations from multiple breast cancer families. Cancer Prev Res 4(7):1002–1010

    Article  CAS  Google Scholar 

  • Tian J-Y, Guo F-J, Zheng G-Y, Ahmad A (2018) Prostate cancer: updates on current strategies for screening, diagnosis and clinical implications of treatment modalities. Carcinogenesis 39(3):307–317

    Article  CAS  PubMed  Google Scholar 

  • Velonas VM, Woo HH, Remedios CGD, Assinder SJ (2013) Current status of biomarkers for prostate cancer. Int J Mol Sci 14(6):11034–11060

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao B, Zhang X, Krummenacher C, Song S, Gao L, Zhang H, Zeng M (2018) Immunization with Fc-based recombinant Epstein-Barr virus gp350 elicits potent neutralizing humoral immune response in a BALB/c mice model. Front Immunol 9:932

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the National Research Foundation of Korea grant [2021R1F1A1063869], Bio & Medical Technology Development Program of the National Research Foundation (NRF) and funded by the Korean government (MSIT) (No. 2019K1A3A1A18116087).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, SYO, and KK; methodology, SYO, KBK, YJK, HJH, YRK, and PH; validation, MKK, YKL, DSK, and SCM.; formal analysis, SYO; investigation, KBK, and KK; resources, SYO, PH, and KK; data curation, KBK and YJK; writing—original draft preparation, SYO and KBK; writing—review and editing, KK; visualization, KBK and KK; supervision, KK; project administration, KBK and Y.J.K.

Corresponding author

Correspondence to Kisung Ko.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Communicated by Baochun Li.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, S., Kim, K., Kang, Y.J. et al. Co-transient expression of PSA-Fc and PAP-Fc fusion protein in plant as prostate cancer vaccine candidates and immune responses in mice. Plant Cell Rep 42, 1203–1215 (2023). https://doi.org/10.1007/s00299-023-03028-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-023-03028-3

Keywords

Navigation