Skip to main content
Log in

Auxin and CmAP1 regulate the reproductive development of axillary buds in Chinese chestnut (Castanea mollissima)

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Auxin accumulation upregulates the expression of APETALA1 (CmAP1) and subsequently activates inflorescence primordium development in axillary buds of chestnut.

Abstract

The architecture of fruiting branches is a key determinant of chestnut yield. Normally, axillary buds at the top of mother fruiting branches develop into flowering shoots and bear fruits, and the lower axillary buds develop into vegetative shoots. Decapitation of the upper axillary buds induces the lower buds to develop into flowering shoots. How decapitation modulates the tradeoff between vegetative and reproductive development is unclear. We detected inflorescence primordia within both upper and lower axillary buds on mother fruiting branches. The level of the phytohormones 3-indoleacetic acid (IAA) and trans-zeatin (tZ) increased in the lower axillary buds in response to decapitation. Exogenous application of the synthetic analogues 1-naphthylacetic acid (NAA) or 6-benzyladenine (6-BA) blocked or promoted, respectively, the development of the inflorescence primordia in axillary buds. The transcript levels of the floral identity gene CmAP1 increased in axillary buds following decapitation. An auxin response element TGA-box is present in the CmAP1 promoter and influenced the CmAP1 promoter-driven expression of β-glucuronidase (GUS) in floral organs in Arabidopsis, suggesting that CmAP1 is induced by auxin. We propose that decapitation releases axillary bud outgrowth from inhibition caused by apical dominance. During this process, decapitation-induced accumulation of auxin induces CmAP1 expression, subsequently promoting the reproductive development of axillary buds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barbier FF, Dun EA, Beveridge CA (2017) Apical dominance. Curr Biol CB 27:R864-r865

    Article  CAS  PubMed  Google Scholar 

  • Beveridge CA, Weller JL, Singer SR, Hofer JM (2003) Axillary meristem development. Budding relationships between networks controlling flowering, branching, and photoperiod responsiveness. Plant Physiol 131:927–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booker J, Chatfield S, Leyser O (2003) Auxin acts in xylem-associated or medullary cells to mediate apical dominance. Plant Cell 15:495–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chabikwa TG, Brewer PB, Beveridge CA (2019) Initial bud outgrowth occurs independent of auxin flow from out of buds. Plant Physiol 179:55–65

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW (2005) Auxin response factor1 and auxin response factor2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development (Cambridge, England) 132:4563–4574

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Yuan D, Tian X, Zhu Z, Liu M, Cao H (2017) Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in the flowers of Chinese Chinquapin (Castanea henryi). J Agric Food Chem 65:10332–10349

    Article  CAS  PubMed  Google Scholar 

  • Ferguson BJ, Beveridge CA (2009) Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. Plant Physiol 149:1929–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fichtner F, Barbier FF, Kerr SC, Dudley C, Cubas P, Turnbull C, Brewer PB, Beveridge CA (2022) Plasticity of bud outgrowth varies at cauline and rosette nodes in Arabidopsis thaliana. Plant Physiol 188:1586–1603

    Article  CAS  PubMed  Google Scholar 

  • Grbić VBA (2000) Axillary meristem development in Arabidopsis thaliana. Plant J 21:215–223

    Article  PubMed  Google Scholar 

  • Gregis V, Andrés F, Sessa A, Guerra RF, Simonini S, Mateos JL, Torti S, Zambelli F, Prazzoli GM, Bjerkan KN, Grini PE, Pavesi G, Colombo L, Coupland G, Kater MM (2013) Identification of pathways directly regulated by short vegetative phase during vegetative and reproductive development in Arabidopsis. Genome Biol 14:R56

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall SM, Hillman JR (1975) Correlative inhibition of lateral bud growth in Phaseolus vulgaris L. timing of bud growth following decapitation. Planta 123:137–143

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Zhang C, Yang H, Jiao Y (2014) Cytokinin pathway mediates APETALA1 function in the establishment of determinate floral meristems in Arabidopsis. Proc Natl Acad Sci USA 111:6840–6845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol CB 15:1899–1911

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann K, Wellmer F, Muiño JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata A, Madueño F, Krajewski P, Meyerowitz EM, Angenent GC, Riechmann JL (2010) Orchestration of floral initiation by APETALA1. Science (NY) 328:85–89

    Article  CAS  Google Scholar 

  • Krizek BA (2011) Auxin regulation of Arabidopsis flower development involves members of the AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) family. J Exp Bot 62:3311–3319

    Article  CAS  PubMed  Google Scholar 

  • Lee ZH, Hirakawa T, Yamaguchi N, Ito T (2019) The roles of plant hormones and their interactions with regulatory genes in determining meristem activity. Int J Mol Sci 20(16):4065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu ZB, Ulmasov T, Shi X, Hagen G, Guilfoyle TJ (1994) Soybean GH3 promoter contains multiple auxin-inducible elements. Plant Cell 6:645–657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28:465–474

    Article  CAS  PubMed  Google Scholar 

  • Morris DA (1977) Transport of exogenous auxin in two-branched dwarf pea seedlings (Pisum sativum L.): Some implications for polarity and apical dominance. Planta 136:91–96

    Article  CAS  PubMed  Google Scholar 

  • Morris GC, Steven PC, Ottoline L (2001) NAA restores apical dominance in the axr3-1 mutant of Arabidopsis thaliana. Ann Bot 87:61–65

    Article  Google Scholar 

  • Muller D, Waldie T, Miyawaki K, To JP, Melnyk CW, Kieber JJ, Kakimoto T, Leyser O (2015) Cytokinin is required for escape but not release from auxin mediated apical dominance. Plant J 82:874–886

    Article  PubMed  PubMed Central  Google Scholar 

  • Nordström A, Tarkowski P, Tarkowska D, Norbaek R, Astot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. Proc Natl Acad Sci U S A 101:8039–8044

    Article  PubMed  PubMed Central  Google Scholar 

  • Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the auxin polar transport system in early stages of arabidopsis floral bud formation. Plant Cell 3:677–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierik R, Fankhauser C, Strader LC, Sinha N (2021) Architecture and plasticity: optimizing plant performance in dynamic environments. Plant Physiol 187:1029–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Guan SC, Wen C, Li P, Gao Z, Chen X (2019) Auxin and cytokinin coordinate the dormancy and outgrowth of axillary bud in strawberry runner. BMC Plant Biol 19:528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan M, Li G, Chen X, Xing L, Ma J, Zhang D, Ge H, Han M, Sha G, An N (2019) Role of Cytokinin, Strigolactone, and Auxin Export on Outgrowth of Axillary Buds in Apple. Front Plant Sci 10:616

    Article  PubMed  PubMed Central  Google Scholar 

  • Teo ZW, Song S, Wang YQ, Liu J, Yu H (2014) New insights into the regulation of inflorescence architecture. Trends Plant Sci 19:158–165

    Article  CAS  PubMed  Google Scholar 

  • Thimann KV, Skoog F (1933) Studies on the growth hormone of plants: iii. the inhibiting action of the growth substance on bud development. Proc Natl Acad Sci U S A 19:714–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Mourik S, Kaufmann K, van Dijk AD, Angenent GC, Merks RM, Molenaar J (2012) Simulation of organ patterning on the floral meristem using a polar auxin transport model. PLoS ONE 7:e28762

    Article  PubMed  PubMed Central  Google Scholar 

  • Vidaurre DP, Ploense S, Krogan NT, Berleth T (2007) AMP1 and MP antagonistically regulate embryo and meristem development in Arabidopsis. Development (cambridge, England) 134:2561–2567

    Article  CAS  PubMed  Google Scholar 

  • Waldie T, Leyser O (2018) Cytokinin targets auxin transport to promote shoot branching. Plant Physiol 177:803–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Perez-Garcia MD, Daviere JM, Barbier F, Oge L, Gentilhomme J, Voisine L, Peron T, Launay-Avon A, Clement G, Baumberger N, Balzergue S, Macherel D, Grappin P, Bertheloot J, Achard P, Hamama L, Sakr S (2021) Outgrowth of the axillary bud in rose is controlled by sugar metabolism and signalling. J Exp Bot 72:3044–3060

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Ogé L, Pérez Garcia M-D, Launay-Avon A, Clément G, Le Gourrierec J, Hamama L, Sakr S (2022) Antagonistic Effect of Sucrose Availability and Auxin on Rosa Axillary Bud Metabolism and Signaling, Based on the Transcriptomics and Metabolomics Analysis. Front Plant Sci 13. https://doi.org/10.3389/fpls.2022.830840

  • Ward SP, Leyser O (2004) Shoot branching. Curr Opin Plant Biol 7:73–78

    Article  CAS  PubMed  Google Scholar 

  • Wils CR, Kaufmann K (2017) Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. Biochim Biophys Acta 1860:95–105

    Article  CAS  Google Scholar 

  • Yamaguchi N, Wu MF, Winter CM, Berns MC, Nole-Wilson S, Yamaguchi A, Coupland G, Krizek BA, Wagner D (2013) A molecular framework for auxin-mediated initiation of flower primordia. Dev Cell 24:271–282

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Wang B, Zhang W, Shan H, Kong H (2016) Gains and losses of cis-regulatory elements led to divergence of the arabidopsis APETALA1 and CAULIFLOWER duplicate genes in the time, space, and level of expression and regulation of one paralog by the other. Plant Physiol 171:1055–1069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Wang R, Zi H, Li Y, Cao X, Li D, Guo L, Tong J, Pan Y, Jiao Y, Liu R, Xiao L, Liu X (2018) AUXIN RESPONSE FACTOR3 regulates floral meristem determinacy by repressing cytokinin biosynthesis and signaling. Plant Cell 30:324–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the Youth Scientist Fund of the Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences (LGYJJ202007), and by the China National Key R&D Program (2018YFD1000605).

Author information

Authors and Affiliations

Authors

Contributions

YC conceived and designed the experiments, performed the experiments, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft. LC analyzed the data, authored or reviewed drafts of the article, and approved the final draft. GH analyzed the data, authored or reviewed drafts of the article, and approved the final draft. XG performed the experiments, analyzed the data, and approved the final draft. YL performed the experiments, prepared figures and/or tables, and approved the final draft.

Corresponding author

Correspondence to Yanping Lan.

Ethics declarations

Conflict of interest

The authors declare there are no competing interests.

Additional information

Communicated by Prakash Lakshmanan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Cheng, L., Hu, G. et al. Auxin and CmAP1 regulate the reproductive development of axillary buds in Chinese chestnut (Castanea mollissima). Plant Cell Rep 42, 287–296 (2023). https://doi.org/10.1007/s00299-022-02956-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-022-02956-w

Keywords

Navigation