Skip to main content
Log in

OsWRKY28 positively regulates salinity tolerance by directly activating OsDREB1B expression in rice

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

OsWRKY28 confers salinity tolerance by directly binding to OsDREB1B promoter and increasing its transcriptional activity, and negatively regulates abscisic acid mediated seedling establishment in rice.

Abstract

WRKY transcription factors have been reported to play a vital role in plants growth, development, abiotic and biotic stress responses. In this study, we explored the functions of a transcription factor OsWRKY28 in rice. The transcript level of OsWRKY28 was strikingly increased under drought, chilling, salt and abscisic acid treatments. The OsWRKY28 overexpression lines showed enhanced salinity stress tolerance, whereas the oswrky28 mutants displayed salt sensitivity compared to wild-type plants. Under salt stress treatment, the expression levels of OsbZIP05, OsHKT1;1 and OsDREB1B were significantly lower yet the level of OsHKT2;1 was significantly higher in oswrky28 mutants than those in wide type plants. Our data of yeast one-hybrid assay and dual-luciferase assay supported that OsWRKY28 could directly bind to the promoter of OsDREB1B to enhance salinity tolerance in rice. In addition, OsWRKY28 overexpression lines displayed hyposensitivity and the oswrky28 mutants showed hypersensitivity compared to wild-type plants under exogenous abscisic acid treatment. Based on the results of yeast two-hybrid assay and GAL4-dependent chimeric transactivation assay, OsWRKY28 physically interacts with OsMPK11 and its transcriptional activity could be regulated by OsMPK11. Together, OsWRKY28 confers salinity tolerance through directly targeting OsDREB1B promoter and further activating its transcription in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data supporting the findings of this work are available within the article and its Supporting Information files.

Abbreviations

ABA:

Abscisic acid

cDNA:

Complementary DNA

CDS:

Coding sequence

DREB:

Dehydration responsive element binding

FLUC:

Firefly luciferase

GA:

Gibberellin

MAPK:

Mitogen-activated protein kinase

MS:

Murashige and Skoog

PEG:

Polyethylene glycol

QRT-PCR:

Quantitative reverse transcription PCR

RLUC:

Renilla luciferase

ROS:

Reactive oxygen species

TF:

Transcription factors

WT:

Wild type

References

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Bakshi M, Oelmuller R (2014) WRKY transcription factors: Jack of many trades in plants. Plant Signal Behav 9:e27700–e27700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Zhao Y, Xu S, Zhang Z, Xu Y, Zhang J, Chong K (2018) OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice. New Phytol 218:219–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chujo T, Miyamoto K, Shimogawa T, Shimizu T, Otake Y, Yokotani N, Nishizawa Y, Shibuya N, Nojiri H, Yamane H, Minami E, Okada K (2013) OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus. Plant Mol Biol 82:23–37

    Article  CAS  PubMed  Google Scholar 

  • Danquah A, de Zelicourt A, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 32:40–52

    Article  CAS  PubMed  Google Scholar 

  • Deng X, Xu X, Liu Y, Zhang Y, Yang L, Zhang S, Xu J (2020) Induction of γ-aminobutyric acid plays a positive role to Arabidopsis resistance against Pseudomonas syringae. J Integr Plant Biol 62:1797–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Hou X, Fang J, Wei P, Xu B, Chen M, Feng Y, Chu C (2013) The rice GERMINATION DEFECTIVE 1, encoding a B3 domain transcriptional repressor, regulates seed germination and seedling development by integrating GA and carbohydrate metabolism. Plant J 75:403–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutha LR, Reddy AR (2008) Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant Mol Biol 68:533–555

    Article  CAS  PubMed  Google Scholar 

  • Hamel L-P, Nicole M-C, Sritubtim S, Morency M-J, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S, Seguin A, Ellis BE (2006) Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci 11:192–198

    Article  CAS  PubMed  Google Scholar 

  • Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ 33:552–565

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Wang Y, Tang L, Tong X, Wang L, Liu L, Huang S, Zhang J (2019) SAPK10-mediated phosphorylation on WRKY72 releases its suppression on jasmonic acid biosynthesis and bacterial blight resistance. Iscience 16:499–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu L, Ye M, Li R, Zhang T, Zhou G, Wang Q, Lu J, Lou Y (2015) The rice transcription factor WRKY53 suppresses herbivore-induced defenses by acting as a negative feedback modulator of mitogen-activated protein kinase activity. Plant Physiol 169:2907–2921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huai J, Zhang X, Li J, Ma T, Zha P, Jing Y, Lin R (2018) SEUSS and PIF4 coordinately regulate light and temperature signaling pathways to control plant growth. Mol Plant 11:928–942

    Article  CAS  PubMed  Google Scholar 

  • Huang K, Wu T, Ma Z, Li Z, Chen H, Zhang M, Bian M, Bai H, Jiang W, Du X (2021a) Rice transcription factor OsWRKY55 is involved in the drought response and regulation of plant growth. Int J Mol Sci 22:4337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Hu L, Zhang S, Zhang M, Jiang W, Wu T, Du X (2021b) Rice OsWRKY50 mediates ABA-dependent seed germination and seedling growth, and ABA-independent salt stress tolerance. Int J Mol Sci 22:16

    Google Scholar 

  • Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J (2017) WRKY transcription factors in plant responses to stresses. J Integr Plant Biol 59:86–101

    Article  CAS  PubMed  Google Scholar 

  • Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla-Pareek SL (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaashyap M, Ford R, Bohra A, Kuvalekar A, Mantri N (2017) Improving salt tolerance of chickpea using modern genomics tools and molecular breeding. Curr Genomics 18:557–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang G, Yan D, Chen X, Li Y, Yang L, Zeng R (2020) Molecular characterization and functional analysis of a novel WRKY transcription factor HbWRKY83 possibly involved in rubber production of Hevea brasiliensis. Plant Physiol Bioch 155:483–493

    Article  CAS  Google Scholar 

  • Kim C-Y, Kieu Thi Xuan V, Cong Danh N, Jeong D-H, Lee S-K, Kumar M, Kim S-R, Park S-H, Kim J-K, Jeon J-S (2016) Functional analysis of a cold-responsive rice WRKY gene, OsWRKY71. Plant Biotechnol Rep 10:13–23

    Article  CAS  Google Scholar 

  • Lan J, Lin Q, Zhou C, Ren Y, Liu X, Miao R, Jing R, Mou C, Nguyen T, Zhu X, Wang Q, Zhang X, Guo X, Liu S, Jiang L, Wan J (2020) Small grain and semi-dwarf 3, a WRKY transcription factor, negatively regulates plant height and grain size by stabilizing SLR1 expression in rice. Plant Mol Biol 104:429–450

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Fu D, Wang X, Zeng R, Zhang X, Tian J, Zhang S, Yang X, Tian F, Lai J, Shi Y, Yang S (2022) The transcription factor bZIP68 negatively regulates cold tolerance in maize. Plant Cell 34:2833–2851

    Article  PubMed  Google Scholar 

  • Lim C, Kang K, Shim Y, Yoo S-C, Paek N-C (2022) Inactivating transcription factor OsWRKY5 enhances drought tolerance through abscisic acid signaling pathways. Plant Physiol 188:1900–1916

    Article  CAS  PubMed  Google Scholar 

  • Lin R, Ding L, Casola C, Ripoll DR, Feschotte C, Wang H (2007) Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318:1302–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Wang J, Gou J, Wang X, Li Z, Yang X, Sun S (2020) Overexpression of NtSnRK2.2 enhances salt tolerance in Nicotiana tabacum by regulating carbohydrate metabolism and lateral root development. Funct Plant Biol 47:537–543

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu Y-G (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Machens F, Becker M, Umrath F, Hehl R (2014) Identification of a novel type of WRKY transcription factor binding site in elicitor-responsive cis-sequences from Arabidopsis thaliana. Plant Mol Biol 84:371–385

    Article  CAS  PubMed  Google Scholar 

  • Mao D, Xin Y, Tan Y, Hu X, Bai J, Liu Z-y, Yu Y, Li L, Peng C, Fan T, Zhu Y, Guo Y-l, Wang S, Lu D, Xing Y, Yuan L, Chen C (2019) Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate. P Natl Acad Sci USA 116:3494–3501

    Article  CAS  Google Scholar 

  • Mukherjee K, Choudhury AR, Gupta B, Gupta S, Sengupta DN (2006) An ABRE-binding factor, OSBZ8, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of indica rice. Bmc Plant Biol 6:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci 10:339–346

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Bartley LE, Chen X, Dardick C, Chern M, Ruan R, Canlas PE, Ronald PC (2008) OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. Mol Plant 1:446–458

    Article  CAS  PubMed  Google Scholar 

  • Phukan UJ, Jeena GS, Shukla RK (2016) WRKY transcription factors: molecular regulation and stress responses in plants. Front Plant Sci 7:760

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin Y, Tian Y, Liu X (2015) A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana. Biochem Bioph Res Co 464:428–433

    Article  CAS  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Liu C, Zhang Y, Meng X, Zhou X, Chu C, Wang X (2012) OsWRKY30 is activated by MAP kinases to confer drought tolerance in rice. Plant Mol Biol 80:241–253

    Article  CAS  PubMed  Google Scholar 

  • Ueno Y, Yoshida R, Kishi-Kaboshi M, Matsushita A, Jiang CJ, Goto S, Takahashi A, Hirochika H, Takatsuji H (2015) Abiotic stresses antagonize the rice defence pathway through the tyrosine-dephosphorylation of OsMPK6. PLoS Pathog 11:e1005231

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang R, Jing W, Xiao L, Jin Y, Shen L, Zhang W (2015) The rice high-affinity potassium transporter1;1 is involved in salt tolerance and regulated by an MYB-type transcription factor. Plant Physiol 168:1076–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Xu X, Tang Z, Zhang W, Huang X, Zhao F (2018) OsWRKY28 regulates phosphate and arsenate accumulation, root system architecture and fertility in rice. Front Plant Sci 9:1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei H, Wang X, He Y, Xu H, Wang L (2021) Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1-mediated sodium homeostasis. EMBO J 40:e105086

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Schumaker KS, Zhu J (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(Suppl):S165-183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan L, Zhang H, Zheng Y, Cong Y, Liu C, Fan F, Zheng C, Yuan G, Pan G, Yuan D, Duan M (1800) Transcription factor OsMADS25 improves rice tolerance to cold stress. Yi Chuan 43:1078–1087

    Google Scholar 

  • Yokotani N, Sato Y, Tanabe S, Chujo T, Shimizu T, Okada K, Yamane H, Shimono M, Sugano S, Takatsuji H, Kaku H, Minami E, Nishizawa Y (2013) WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. J Exp Bot 64:5085–5097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Liu J, Zhao T, Gomez A, Li C, Yu C, Li H, Lin J, Yang Y, Liu B, Lin C (2016) A drought-inducible transcription factor delays reproductive timing in rice. Plant Physiol 171:334–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Xu N, Chen H, Wang G, Huang J (2018) OsMADS25 regulates root system development via auxin signalling in rice. Plant J 95:1004–1022

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Zhao R, Huang K, Huang S, Wang H, Wei Z, Li Z, Bian M, Jiang W, Wu T, Du X (2022) The OsWRKY63-OsWRKY76-OsDREB1B module regulates chilling tolerance in rice. Plant J 112:383–398

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Lin Q, Lan J, Zhang T, Liu X, Miao R, Mou C, Nguyen T, Wang J, Zhang X, Zhou L, Zhu X, Wang Q, Zhang X, Guo X, Liu S, Jiang L, Wan J (2020) WRKY transcription factor OsWRKY29 represses seed dormancy in rice by weakening abscisic acid response. Front Plant Sci 11:691

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu J (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Zhou Y, Zhai H, He S, Zhao N, Liu Q (2020) A novel sweetpotato WRKY transcription factor, IbWRKY2, positively regulates drought and salt tolerance in transgenic Arabidopsis. Biomolecules 10:506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Science and Technology Development Plan of Jilin Province, China (20210302008NC) and National Natural Science Foundation of China (31701396 and 32101664).

Funding

National Natural Science Foundation of China, 31701396, Tao Wu, 32101664, Shuangzhan Huang, Jilin Scientific and Technological Development Program, 20210302008NC, Xinglin Du

Author information

Authors and Affiliations

Authors

Contributions

TW and XD designed the study; ZM, RZ, HW, SR, LS, ZW, BG, and JJ executed the experiments; SH, YZ and MC analyzed the data; ZM and RZ wrote the manuscript; XD, TW, and WJ modified the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Wenzhu Jiang, Tao Wu or Xinglin Du.

Ethics declarations

Conflict of interest

The authors claim no conflicts of interest.

Additional information

Communicated by Zheng-Yi Xu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 426 KB)

Supplementary file2 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhao, R., Wang, H. et al. OsWRKY28 positively regulates salinity tolerance by directly activating OsDREB1B expression in rice. Plant Cell Rep 42, 223–234 (2023). https://doi.org/10.1007/s00299-022-02950-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-022-02950-2

Keywords

Navigation