Skip to main content
Log in

Harnessing hormone gibberellin knowledge for plant height regulation

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Harnessing hormone GA knowledge is a potential means to develop plant height ideotypes.

Abstract

Plant height holds significance for natural beauty and agricultural revolution. The increased grain productivity during the Green Revolution of the 1960s is partly attributed to the reshaping of plant stature, which is conferred by changes in phytohormone gibberellin (GA) metabolism or signaling. GA fine-tunes multiple aspects of biological events and plays a pivotal role in plant height determinant. Harnessing hormone GA knowledge is a potential means to develop ideal plant height to meet the future demand. Here, we present an overview of characterized GA pathway genes for plant height regulation. Novel alleles of Green Revolution genes sd1 and Rht are specially delineated. Through interactome analysis, we uncover GA20ox and GA3ox family members as central hub modulators of GA pathway. Empowered by GA knowledge, we suggest ways towards design breeding of plant height ideotypes through harnessing the alterations of GA cascade. We highlight the utility of genome editing to generate weak alleles to circumvent side effects of GA pathway perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Angira B, Addison CK, Cerioli T, Rebong DB, Wang DR, Pumplin N, Ham JH, Oard JH, Linscombe SD, Famoso AN (2019) Haplotype characterization of the sd1 semidwarf gene in United States rice. Plant Genome 12(3):1–9

    Article  PubMed  CAS  Google Scholar 

  • Bensen RJ, Johal GS, Crane VC, Tossberg JT, Schnable PS, Meeley RB, Briggs SP (1995) Cloning and characterization of the maize An1 gene. Plant Cell 7(1):75–84

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhuvaneswari S, Gopala Krishnan S, Ellur RK, Vinod KK, Bollinedi H, Bhowmick PK, Bansal VP, Nagarajan M, Singh AK (2020) Discovery of a novel induced polymorphism in SD1 gene governing semi-dwarfism in rice and development of a functional marker for marker-assisted selection. Plants (basel) 9(9):1198

    Article  CAS  Google Scholar 

  • Biswas S, Tian J, Li R, Chen X, Luo Z, Chen M, Zhao X, Zhang D, Persson S, Yuan Z, Shi J (2020) Investigation of CRISPR/Cas9-induced SD1 rice mutants highlights the importance of molecular characterization in plant molecular breeding. J Genet Genomics 47(5):273–280

    Article  PubMed  Google Scholar 

  • Chen Y, Hou M, Liu L, Wu S, Shen Y, Ishiyama K, Kobayashi M, McCarty DR, Tan BC (2014) The maize DWARF1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol. Plant Physiol 166(4):2028–2039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen X, Tian X, Xue L, Zhang X, Yang S, Traw MB, Huang J (2019) CRISPR-based assessment of gene specialization in the gibberellin metabolic pathway in rice. Plant Physiol 180(4):2091–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang HH, Hwang I, Goodman HM (1995) Isolation of the Arabidopsis GA4 locus. Plant Cell 7(2):195–201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dill A, Sun T (2001) Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159(2):777–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eshed Y, Lippman ZB (2019) Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science 366(6466):0025

    Article  CAS  Google Scholar 

  • Ferrero V, Viola IL, Ariel FD, Gonzalez DH (2019) Class I TCP transcription factors target the gibberellin biosynthesis gene GA20ox1 and the growth-promoting genes HBI1 and PRE6 during thermomorphogenic growth in Arabidopsis. Plant Cell Physiol 60(8):1633–1645

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Ren F, Lu X, Mao H, Xu M, Degenhardt J, Peters RJ, Wang Q (2016) A tandem array of ent-kaurene synthases in maize with roles in gibberellin and more specialized metabolism. Plant Physiol 170(2):742–751

    Article  CAS  PubMed  Google Scholar 

  • Gao C (2021) Genome engineering for crop improvement and future agriculture. Cell 184(6):1621–1635

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Teng K, Nawaz G, Feng X, Usman B, Wang X, Luo L, Zhao N, Liu Y, Li R (2019) Generation of semi-dwarf rice (Oryza sativa L.) lines by CRISPR/Cas9-directed mutagenesis of OsGA20ox2 and proteomic analysis of unveiled changes caused by mutations. 3 Biotech 9(11):387

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedden P (2003) The genes of the Green Revolution. Trends Genet 19(1):5–9

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444(1):11–25

    Article  CAS  PubMed  Google Scholar 

  • Helliwell CA, Sheldon CC, Olive MR, Walker AR, Zeevaart JA, Peacock WJ, Dennis ES (1998) Cloning of the Arabidopsis ent-kaurene oxidase gene GA3. Proc Natl Acad Sci USA 95(15):9019–9024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ (2001) The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci USA 98(4):2065–2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Cui Y, Dong G, Feng A, Wang D, Zhao C, Zhang Y, Hu J, Zeng D, Guo L, Qian Q (2019) Using CRISPR-Cas9 to generate semi-dwarf rice lines in elite landraces. Sci Rep 9(1):19096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13(5):999–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M (2001) Cloning and functional analysis of two gibberellin 3 beta -hydroxylase genes that are differently expressed during the growth of rice. Proc Natl Acad Sci USA 98(15):8909–8914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M (2004) A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol 54(4):533–547

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2(10):815–822

    Article  CAS  PubMed  Google Scholar 

  • Lawit SJ, Wych HM, Xu D, Kundu S, Tomes DT (2010) Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant Cell Physiol 51:1854–1868

    Article  CAS  PubMed  Google Scholar 

  • Li A, Yang W, Lou X, Liu D, Sun J, Guo X, Wang J, Li Y, Zhan K, Ling HQ, Zhang A (2013) Novel natural allelic variations at the Rht-1 loci in wheat. J Integr Plant Biol 55(11):1026–1037

    Article  CAS  PubMed  Google Scholar 

  • Li S, Tian Y, Wu K, Ye Y, Yu J, Zhang J, Liu Q, Hu M, Li H, Tong Y, Harberd NP, Fu X (2018) Modulating plant growth-metabolism coordination for sustainable agriculture. Nature 560(7720):595–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Chen Y, Wang Y, Zhao J, Wang Y (2022) Gypsy retrotransposon-derived maize lncRNA GARR2 modulates gibberellin response. Plant J 110(5):1433–1446

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Zheng S, Gui J, Fu C, Yu H, Song D, Shen J, Qin P, Liu X, Han B, Yang Y, Li L (2018) Shortened Basal Internodes encodes a gibberellin 2-oxidase and contributes to lodging resistance in rice. Mol Plant 11(2):288–299

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Wu K, Wu Y, Song W, Wang S, Fu X (2022) Beyond the green revolution: improving crop productivity and sustainability by modulating plant growth-metabolic coordination. Mol Plant 15(4):573–576

    Article  CAS  PubMed  Google Scholar 

  • Lo SF, Ho TD, Liu YL, Jiang MJ, Hsieh KT, Chen KT, Yu LC, Lee MH, Chen CY, Huang TP, Kojima M, Sakakibara H, Chen LJ, Yu SM (2017) Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice. Plant Biotechnol J 15(7):850–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Liu J, Ren W, Yang Q, Chai Z, Chen R, Wang L, Zhao J, Lang Z, Wang H, Fan Y, Zhao J, Zhang C (2018) Gene-indexed mutations in maize. Mol Plant 11(3):496–504

    Article  CAS  PubMed  Google Scholar 

  • Margis-Pinheiro M, Zhou XR, Zhu QH, Dennis ES, Upadhyaya NM (2005) Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway. Plant Cell Rep 23(12):819–833

    Article  CAS  PubMed  Google Scholar 

  • Middleton AM, Úbeda-Tomás S, Griffiths J, Holman T, Hedden P, Thomas SG, Phillips AL, Holdsworth MJ, Bennett MJ, King JR, Owen MR (2012) Mathematical modeling elucidates the role of transcriptional feedback in gibberellin signaling. Proc Natl Acad Sci USA 109:7571–7576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mo Y, Pearce S, Dubcovsky J (2018) Phenotypic and transcriptomic characterization of a wheat tall mutant carrying an induced mutation in the C-terminal PFYRE motif of RHT-B1b. BMC Plant Biol 18:253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9(1):11–17

    Article  CAS  PubMed  Google Scholar 

  • Morsy M, Gouthu S, Orchard S, Thorneycroft D, Harper JF, Mittler R, Cushman JC (2008) Charting plant interactomes: possibilities and challenges. Trends Plant Sci 13:183–191

    Article  CAS  PubMed  Google Scholar 

  • Nakajima M, Shimada A, Takashi Y, Kim YC, Park SH, Ueguchi-Tanaka M, Suzuki H, Katoh E, Iuchi S, Kobayashi M, Maeda T, Matsuoka M, Yamaguchi I (2006) Identification and characterization of Arabidopsis gibberellin receptors. Plant J 46(5):880–889

    Article  CAS  PubMed  Google Scholar 

  • Paciorek T, Chiapelli BJ, Wang JY, Paciorek M, Yang H, Sant A, Val DL, Boddu J, Liu K, Gu C, Brzostowski LF, Wang H, Allen EM, Dietrich CR, Gillespie KM, Edwards J, Goldshmidt A, Neelam A, Slewinski TL (2022) Targeted suppression of gibberellin biosynthetic genes ZmGA20ox3 and ZmGA20ox5 produces a short stature maize ideotype. Plant Biotechnol J 20(6):1140–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Harberd NP (1993) Derivative alleles of the Arabidopsis gibberellin-insensitive (gai) mutation confer a wild-type phenotype. Plant Cell 5(3):351–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400(6741):256–261

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Liu JH, Zhao WS, Chen XJ, Guo ZJ, Peng YL (2013) Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice. Mol Plant Microbe Interact 26(2):227–239

    Article  CAS  PubMed  Google Scholar 

  • Rana BB, Kamimukai M, Bhattarai M, Rana L, Matsumoto A, Nagano H, Oue H, Murai M (2021) Effects of tall alleles SD1-in and SD1-ja to the dwarfing allele sd1-d originating from ‘Dee-geo-woo-gen’ on yield and related traits on the genetic background of indica IR36 in rice. Breed Sci 71(3):334–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regnault T, Davière JM, Heintz D, Lange T, Achard P (2014) The gibberellin biosynthetic genes AtKAO1 and AtKAO2 have overlapping roles throughout Arabidopsis development. Plant J 80(3):462–474

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134(4):1642–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverstone AL, Mak PY, Martínez EC, Sun TP (1997) The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana. Genetics 146(3):1087–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99(13):9043–9048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun TP (2011) The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr Biol 21(9):R338–R345

    Article  CAS  PubMed  Google Scholar 

  • Sun TP, Kamiya Y (1994) The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell 6(10):1509–1518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, Jensen LJ, von Mering C (2021) The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49:D605–D612

    Article  CAS  PubMed  Google Scholar 

  • Tamura S (1991) Historical aspects of gibberellins. In: Takahashi N, Phinney BO, Macmillan J (eds) Gibberellins. Springer-Verlag, New York, pp 1–8

    Google Scholar 

  • Teng F, Zhai L, Liu R, Bai W, Wang L, Huo D, Tao Y, Zheng Y, Zhang Z (2013) ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant J 73(3):405–416

    Article  CAS  PubMed  Google Scholar 

  • Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437(7059):693–698

    Article  CAS  PubMed  Google Scholar 

  • Van De Velde K, Ruelens P, Geuten K, Rohde A, Van Der Straeten D (2017) Exploiting DELLA signaling in cereals. Trends Plant Sci 22:880–893

    Article  CAS  Google Scholar 

  • Wang Y, Deng D (2014) Molecular basis and evolutionary pattern of GA–GID1–DELLA regulatory module. Mol Genet Genomics 289(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xu J, Deng D, Ding H, Bian Y, Yin Z, Wu Y, Zhou B, Zhao Y (2016) A comprehensive meta-analysis of plant morphology, yield, stay-green, and virus disease resistance QTL in maize (Zea mays L.). Planta 243(2):459–471

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhao J, Lu W, Deng D (2017) Gibberellin in plant height control: old player, new story. Plant Cell Rep 36(3):391–398

    Article  CAS  PubMed  Google Scholar 

  • Wen CK, Chang C (2002) Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell 14(1):87–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu YL, Li L, Wu K, Peeters AJ, Gage DA, Zeevaart JA (1995) The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: molecular cloning and functional expression. Proc Natl Acad Sci USA 92(14):6640–6644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S, Sun TP, Kawaide H, Kamiya Y (1998) The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. Plant Physiol 116(4):1271–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Huang J, Wang Y, Xu R, Yang Z, Zhao Z, Liu S, Tian Y, Zheng X, Li F, Wang J, Song Y, Li J, Cui Y, Zhang LF, Cheng Y, Lan J, Qiao W, Yang Q (2020) Identification and genetic analysis of qCL1.2, a novel allele of the “green revolution” gene SD1 from wild rice (Oryza rufipogon) that enhances plant height. BMC Genet 21(1):62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the editors for the opportunity to contribute to this review and the reviewers for valuable suggestions. We apologize for not being able to cite many relevant original papers owing to space limitations. This work was supported by the National Natural Science Foundation of China (31571671), the High-end Talent Project of Yangzhou University (18HTYZU12), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Funding

National Natural Science Foundation of China, 31571671, Yijun Wang, High-end Talent Project of Yangzhou University, 18HTYZU12, Yijun Wang, Priority Academic Program Development of Jiangsu Higher Education Institutions, PAPD, Yijun Wang.

Author information

Authors and Affiliations

Authors

Contributions

YJW: conceived the review. SSW: prepared the figures and tables. YJW and SSW: wrote the manuscript.

Corresponding author

Correspondence to Yijun Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Wusheng Liu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, Y. Harnessing hormone gibberellin knowledge for plant height regulation. Plant Cell Rep 41, 1945–1953 (2022). https://doi.org/10.1007/s00299-022-02904-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-022-02904-8

Keywords

Navigation