Skip to main content
Log in

The role of melatonin in tomato stress response, growth and development

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Melatonin has attracted widespread attention after its discovery in higher plants. Tomato is a key model economic crop for studying fleshy fruits. Many studies have shown that melatonin plays important role in plant stress resistance, growth, and development. However, the research progress on the role of melatonin and related mechanisms in tomatoes have not been systematically summarized. This paper summarizes the detection methods and anabolism of melatonin in tomatoes, including (1) the role of melatonin in combating abiotic stresses, e.g., drought, heavy metals, pH, temperature, salt, salt and heat, cold and drought, peroxidation hydrogen and carbendazim, etc., (2) the role of melatonin in combating biotic stresses, such as tobacco mosaic virus and foodborne bacillus, and (3) the role of melatonin in tomato growth and development, such as fruit ripening, postharvest shelf life, leaf senescence and root development. In addition, the future research directions of melatonin in tomatoes are explored in combination with the role of melatonin in other plants. This review can provide a theoretical basis for enhancing the scientific understanding of the role of melatonin in tomatoes and the improved breeding of fruit crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AANAT:

Arylalkylamine N-acetyltransferase

ACS:

1-Aminocyclopropane-1-carboxylic acid (ACC) synthase

AFMK:

N1-Acetyl-N2-formyl-5-methoxykynuramine

APX:

Ascorbate peroxidase

AsA:

Ascorbic acid

ASC:

Ascorbate

ASMT:

N-Acetylserotonin methyltransferase

ATPase:

An enzyme that catalyzes the hydrolysis of ATP

AtPMTR1:

Phytomelatonin receptor of Arabidopsis Thaliana

bZIP:

Basicregion-leucine zipper

c3OHM:

Cyclic 3-hydroxymelatonin

CA:

Carbonic anhydrase

CBF:

C-repeat/dehydration-responsive element (CRT/DRE) binding factors

CCO:

Cytochrome C oxidase

CER3 :

Gene ID: Solyc03g117800.2, very-long-chain alkane synthase

CHI:

Chitinase

CO2 :

Carbon dioxide

COMT:

Caffeic acid O-methyltransferase

CRAANAT:

AANAT of Chlamydomonas reinhardtii

CRTISO:

Carotenoid isomerase

D1:

A protein subunit of photosystem II

DES:

Desulfhydrase

DHAR:

Dehydroascorbate reductase

DNA:

DeoxyriboNucleic acid

DREB:

Ehydration-responsive element binding proteins

DW:

Dry weight

ERF:

Ethylene response factors

Exp:

Expansion protein

FAD:

Fatty acid desaturase

Fv/Fm:

Photosystem II (PSII) maximum photochemical quantum yield

FW:

Fresh weight

GLU:

β-1,3-Glucanase

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

GSNOR:

S-Nitrosoglutathione reductase

H2O2 :

Hydrogen peroxide

H2S:

Hydrogen sulfide

HsfA1a :

Heatshock factor A1a

HSP:

Heat shock protein

IAA:

Indoleacetic acid

IDO:

Indoleamine 2,3-dioxygenase

KCS1 :

Gene ID: Solyc10g009240.2, Ketoacyl-CoA synthase

LC–MS:

Liquid chromatography-mass spectrometry

LOX :

Lipoxygenase

LTP1 :

Gene ID: Solyc10g075070.1 non-specific lipid-transfer protein

M2H:

Melatonin 2-hydroxylase

M3H:

Melatonin 3-hydroxylase

MBC:

Carbendazim

MDHAR:

Monodehydroascorbate reductase

MeJA:

Methyl Jasmonate

Nacl:

Sodium chloride

NADPH:

Nicotinamide adenine dinucleotide phosphate

NAHS:

Sodium hydrosulfide

NO:

Nitric oxide

NPQ:

Non-photochemical quenching

NR :

Never ripening

oAANAT :

AANATT of Ovis aries (sheep)

OEC:

Oxygen evolution complex

oHIOMT :

Hydroxyindole-O-methyltransferase (HIOMT) of Ovis aries (sheep)

PAL:

Phenylalanine ammonia-lyas

PAs:

Polyamines

PE:

Pectin esterase

PG:

Polygalacturonase

Ph-GPX:

Phospholipid hydroperoxide glutathione peroxidase

PLD :

Phospholipase D

PMTR:

Protein-coupled receptor

PPO:

Polyphenol oxidase

Pro:

Proline

PsbO:

A protein subunit of photosystem II

PSII:

Photosystem II

PSY:

Phytoene synthase

QTLs:

Quantitative trait locus

RB:

Light mix red (R) and blue (B)

RBOH:

NADPH oxidase

ROS:

Reactive oxygen species

Rubisco:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

RWC:

Relative water content

SA:

Salicylic acid

SBPase:

Sedoheptulose-1,7-bisphosphatase

SDH:

Succinate dehydrogenase

SlCNR :

Colorless non-ripening

SlCOMT:

Caffeic acid O-methyltransferase (COMT) of tomato

SlEIL :

Ethylene-insensitive3 (EIN3) -like

SlERF :

Ethylene response factor

SlETR :

Ethylene receptor of tomato

SlNOR :

Non-ripening (nor) of tomato

SlPAO :

Polyamine oxidase of tomato

SlRboh :

Respiratory burst oxidase homologue (Rboh) of tomato

SlRIN :

Ripening-inhibitor (rin) of tomato

SlSNAT :

SNAT of tomato

SlTrpDC :

Tryptophan decarboxylase (TrpDC) of tomato

SlZAT :

The cysteine 2/histidine 2 (C2H2) zinc finger (ZATs) of tomato

SNAT:

Serotonin N-acetyltransferase

SNOs:

S-nitrosothiols

SOD:

Superoxide dismutase

SOS pathway:

Salt overly sensitively pathway

SSC:

Soluble solids content

T5H:

Tryptamine 5-hydroxylase

TBG4:

β-Galactosidase

TDC:

Tryptophan decarboxylase

TPH:

Tryptophan hydroxylase

TRXf:

A Thioredoxin (TRX) gene

TRXm :

A Thioredoxin gene

TSC:

Total soluble carbohydrate

VDE:

Violaxanthin deep oxidase

VIGS:

Virus-induced gene silencing

References

  • Aghdam MS, Luo ZS, Jannatizadeh A, Sheikh-Assadi M, Sharafi Y, Farmani B, Fard JR, Razavi F (2019) Employing exogenous melatonin applying confers chilling tolerance in tomato fruits by upregulating ZAT2/6/12 giving rise to promoting endogenous polyamines, proline, and nitric oxide accumulation by triggering arginine pathway activity. Food Chem 275:549–556

    Article  CAS  PubMed  Google Scholar 

  • Ahammed GJ, Xu W, Liu A, Chen S (2018) COMT1 silencing aggravates heat stress-induced reduction in photosynthesis by decreasing chlorophyll content, photosystem ii activity, and electron transport efficiency in tomato. Front Plant Sci 9:998

    Article  PubMed  PubMed Central  Google Scholar 

  • Ali M, Kamran M, Abbasi GH, Saleem MH, Ahmad S, Parveen A, Malik Z, Afzal S, Ahmar S, Dawar KM, Ali S, Alamri S, Siddiqui MH, Akbar R, Fahad S (2020) Melatonin-induced salinity tolerance by ameliorating osmotic and oxidative stress in the seedlings of two tomato (Solanum lycopersicum L.) cultivars. J Plant Growth Regul 40:2236–2248

    Article  CAS  Google Scholar 

  • Altaf MA, Shahid R, Ren MX, Naz S, Altaf MM, Qadir A, Anwar M, Shakoor A, Hayat F (2020) Exogenous melatonin enhances salt stress tolerance in tomato seedlings. Biol Plant 64:604–615

    Article  CAS  Google Scholar 

  • Altaf MA, Shahid R, Ren MX, Altaf MM, Jahan MS, Khan LU (2021a) Melatonin mitigates nickel toxicity by improving nutrient uptake fluxes, root architecture system, photosynthesis, and antioxidant potential in tomato seedling. J Soil Sci Plant Nutr 21(3):1842–1855

    Article  CAS  Google Scholar 

  • Altaf MA, Shahid R, Ren MX, Altaf MM, Khan LU, Shahid S, Jahan MS (2021b) Melatonin alleviates salt damage in tomato seedling: a root architecture system, photosynthetic capacity, ion homeostasis, and antioxidant enzymes analysis. Sci Horticult 285:110145

    Article  CAS  Google Scholar 

  • Altaf MA, Shahid R, Ren MX, Khan LU, Altaf MM, Jahan MS, Nawaz MA, Naz S, Shahid S, Lal MK, Tiwari RK, Shahid MA (2021c) Protective mechanisms of melatonin against vanadium phytotoxicity in tomato seedlings: insights into nutritional status, photosynthesis, root architecture system, and antioxidant machinery. J Plant Growth Regul 12:1–17

    Google Scholar 

  • Arnao MB, Hernandez-Ruiz J (2013) Growth conditions influence the melatonin content of tomato plants. Food Chem 138(2–3):1212–1214

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernandez-Ruiz J (2021a) Melatonin as a plant biostimulant in crops and during post-harvest: a new approach is needed. J Sci Food Agric 101(13):5297–5304

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernandez-Ruiz J (2021b) Melatonin as a regulatory hub of plant hormone levels and action in stress situations. Plant Biol 23:7–19

    Article  CAS  PubMed  Google Scholar 

  • Back K, Lee H-J (2019) 2-Hydroxymelatonin confers tolerance against combined cold and drought stress in tobacco, tomato, and cucumber as a potent anti-stress compound in the evolution of land plants. Melatonin Res 2(2):35–46

    Article  Google Scholar 

  • Byeon Y, Tan DX, Reiter RJ, Back K (2015) Predominance of 2-hydroxymelatonin over melatonin in plants. J Pineal Res 59(4):448–454

    Article  CAS  PubMed  Google Scholar 

  • Cai SY, Zhang Y, Xu YP, Qi ZY, Li MQ, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Reiter RJ, Yu JQ, Zhou J (2017) HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants. J Pineal Res 62(2):e12387

    Article  CAS  Google Scholar 

  • Chen J, Li H, Yang K, Wang Y, Yang L, Hu L, Liu R, Shi Z (2019) Melatonin facilitates lateral root development by coordinating PAO-derived hydrogen peroxide and Rboh-derived superoxide radical. Free Radic Biol Med 143:534–544

    Article  CAS  PubMed  Google Scholar 

  • Cipolla-Neto J, Amaral FG, Afeche SC, Tan DX, Reiter RJ (2014) Melatonin, energy metabolism, and obesity: a review. J Pineal Res 56(4):371–381

    Article  CAS  PubMed  Google Scholar 

  • Debnath B, Hussain M, Irshad M, Mitra S, Li M, Liu S, Qiu DL (2018a) Exogenous melatonin mitigates acid rain stress to tomato plants through modulation of leaf ultrastructure, photosynthesis and antioxidant potential. Molecules 23:2

    Google Scholar 

  • Debnath B, Hussain M, Li M, Lu XC, Sun YT, Qiu DL (2018b) Exogenous melatonin improves fruit quality features, health promoting antioxidant compounds and yield traits in tomato fruits under acid rain stress. Molecules 23(8):1868

    Article  PubMed Central  CAS  Google Scholar 

  • Debnath B, Li M, Liu S, Pan TF, Ma CL, Qiu DL (2020) Melatonin-mediate acid rain stress tolerance mechanism through alteration of transcriptional factors and secondary metabolites gene expression in tomato. Ecotoxicol Environ Saf 200:110720

    Article  CAS  PubMed  Google Scholar 

  • Ding F, Liu B, Zhang SX (2017a) Exogenous melatonin ameliorates cold-induced damage in tomato plants. Sci Horticult 219:264–271

    Article  CAS  Google Scholar 

  • Ding F, Wang ML, Liu B, Zhang SX (2017b) Exogenous melatonin mitigates photoinhibition by accelerating non-photochemical quenching in tomato seedlings exposed to moderate light during chilling. Front Plant Sci 8:244

    PubMed  PubMed Central  Google Scholar 

  • Ding F, Wang G, Wang ML, Zhang SX (2018) Exogenous melatonin improves tolerance to water deficit by promoting cuticle formation in tomato plants. Molecules 23(7):1605

    Article  PubMed Central  CAS  Google Scholar 

  • Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara HW, Schloot W (1995) Melatonin in edible plants identified by radioimmunoassay and by high-performance liquid chromatography-mass spectrometry. J Pineal Res 18(1):28–31

    Article  CAS  PubMed  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong B, Yan Y, Wen D, Shi Q (2017) Hydrogen peroxide produced by NADPH oxidase: a novel downstream signaling pathway in melatonin-induced stress tolerance in Solanum lycopersicum. Physiol Plant 160(4):396–409

    Article  CAS  PubMed  Google Scholar 

  • Hardeland R, Madrid JA, Tan DX, Reiter RJ (2012) Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res 52(2):139–166

    Article  CAS  PubMed  Google Scholar 

  • Hasan MK, Ahammed GJ, Yin L, Shi K, Xia X, Zhou Y, Yu J, Zhou J (2015) Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front Plant Sci 6:601

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasan MK, Liu CX, Pan YT, Ahammed GJ, Qi ZY, Zhou J (2018) Melatonin alleviates low-sulfur stress by promoting sulfur homeostasis in tomato plants. Sci Rep 8:1–12

    Google Scholar 

  • Hasan MK, Ahammed GJ, Sun S, Li M, Yin H, Zhou J (2019) Melatonin inhibits cadmium translocation and enhances plant tolerance by regulating sulfur uptake and assimilation in Solanum lycopersicum L. J Agric Food Chem 67(38):10563–10576

    Article  CAS  PubMed  Google Scholar 

  • Hoque MN, Tahjib-Ul-Arif M, Hannan A, Sultana N, Akhter S, Hasanuzzaman M, Akter F, Hossain MS, Abu Sayed M, Hasan MT, Skalicky M, Li XN, Brestic M (2021) Melatonin modulates plant tolerance to heavy metal stress: morphological responses to molecular mechanisms. IJMS 22(21):11445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu EM, Liu M, Zhou R, Jiang FL, Sun MT, Wen JQ, Zhu ZH, Wu Z (2021) Relationship between melatonin and abscisic acid in response to salt stress of tomato. Sci Horticult 285:110176

    Article  CAS  Google Scholar 

  • Ibrahim MFM, Abd Elbar OH, Farag R, Hikal M, El-Kelish A, Abou El-Yazied A, Alkahtani J, Abd El-Gawad HG (2020) Melatonin counteracts drought induced oxidative damage and stimulates growth, productivity and fruit quality properties of tomato plants. Plants 9(10):1276

    Article  CAS  PubMed Central  Google Scholar 

  • Jahan MS, Shu S, Wang Y, Chen Z, He MM, Tao MQ, Sun J, Guo SR (2019) Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis. BMC Plant Biol 19(1):1–16

    Article  CAS  Google Scholar 

  • Jahan MS, Guo SR, Baloch AR, Sun J, Shu S, Wang Y, Ahammed GJ, Kabir K, Roy R (2020) Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. Ecotoxicol Environ Saf 197:110593

    Article  CAS  PubMed  Google Scholar 

  • Jahan MS, Guo SR, Sun J, Shu S, Wang Y, Abou El-Yazied A, Alabdallah NM, Hikal M, Mohamed MHM, Ibrahim MFM, Hasan MM (2021a) Melatonin-mediated photosynthetic performance of tomato seedlings under high-temperature stress. Plant Physiol Biochem 167:309–320

    Article  CAS  PubMed  Google Scholar 

  • Jahan MS, Shu S, Wang Y, Hasan MM, El-Yazied AA, Alabdallah NM, Hajjar D, Altaf MA, Sun J, Guo S (2021b) Melatonin pretreatment confers heat tolerance and repression of heat-induced senescence in tomato through the modulation of aba- and ga-mediated pathways. Front Plant Sci 12:650955

    Article  PubMed  PubMed Central  Google Scholar 

  • Jannatizadeh A, Aghdam MS, Luo ZS, Razavi F (2019) Impact of exogenous melatonin application on chilling injury in tomato fruits during cold storage. Food Bioprocess Technol 12(5):741–750

    Article  CAS  Google Scholar 

  • Karaca P, Cekic FÖ (2019) Exogenous melatonin-stimulated defense responses in tomato plants treated with polyethylene glycol. Int J Veg Sci 25(6):601–609

    Article  Google Scholar 

  • Lee HJ, Back K (2016) 2-Hydroxymelatonin promotes the resistance of rice plant to multiple simultaneous abiotic stresses (combined cold and drought). J Pineal Res 61(3):303–316

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Zawadzka A, Czarnocki Z, Reiter RJ, Back K (2016) Molecular cloning of melatonin 3-hydroxylase and its production of cyclic 3-hydroxymelatonin in rice (Oryza sativa). J Pineal Res 61(4):470–478

    Article  CAS  PubMed  Google Scholar 

  • Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 80(10):2587–2587

    Article  CAS  Google Scholar 

  • Lerner AB, Case JD, Heinzelman RV (1959) Structure of melatonin. J Am Chem Soc 81(22):6084–6085

    Article  CAS  Google Scholar 

  • Li L, Yan XY (2021) Insights into the roles of melatonin in alleviating heavy metal toxicity in crop plants. Phyton Int J Exp Bot 90(6):1559–1572

    Google Scholar 

  • Li MQ, Hasan MK, Li CX, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Reiter RJ, Yu JQ, Xu MX, Zhou J (2016) Melatonin mediates selenium-induced tolerance to cadmium stress in tomato plants. J Pineal Res 61(3):291–302

    Article  CAS  PubMed  Google Scholar 

  • Li SE, Xu YH, Bi Y, Zhang B, Shen SL, Jiang TJ, Zheng XL (2019) Melatonin treatment inhibits gray mold and induces disease resistance in cherry tomato fruit during postharvest. Postharv Biol Technol 157:110962

    Article  CAS  Google Scholar 

  • Li DX, Wei J, Peng ZP, Ma WN, Yang Q, Song ZB, Sun W, Yang W, Yuan L, Xu XD, Chang W, Rengel Z, Shen JB, Reiter RJ, Cui XM, Yu DS, Chen Q (2020) Daily rhythms of phytomelatonin signaling modulate diurnal stomatal closure via regulating reactive oxygen species dynamics in Arabidopsis. J Pineal Res 68(3):e12640

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Liu C, Shi QH, Yang FJ, Wei M (2021) Mixed red and blue light promotes ripening and improves quality of tomato fruit by influencing melatonin content. Environ Exp Bot 185:104407

    Article  CAS  Google Scholar 

  • Lin PH, Tung YT, Chen HY, Chiang YF, Hong HC, Huang KC, Hsu SP, Huang TC, Hsia SM (2020) Melatonin activates cell death programs for the suppression of uterine leiomyoma cell proliferation. J Pineal Res 68(1):e12620

    Article  CAS  PubMed  Google Scholar 

  • Liu JL, Wang WX, Wang LY, Sun Y (2015a) Exogenous melatonin improves seedling health index and drought tolerance in tomato. Plant Growth Regul 77(3):317–326

    Article  CAS  Google Scholar 

  • Liu N, Gong B, Jin ZY, Wang XF, Wei M, Yang FJ, Li Y, Shi QH (2015b) Sodic alkaline stress mitigation by exogenous melatonin in tomato needs nitric oxide as a downstream signal. J Plant Physiol 186:68–77

    Article  PubMed  CAS  Google Scholar 

  • Liu N, Jin ZY, Wang SS, Gong BA, Wen D, Wang XF, Wei M, Shi QH (2015c) Sodic alkaline stress mitigation with exogenous melatonin involves reactive oxygen metabolism and ion homeostasis in tomato. Sci Hortic 181:18–25

    Article  CAS  Google Scholar 

  • Liu JL, Zhang RM, Sun YK, Liu ZY, Jin W, Sun Y (2016) The beneficial effects of exogenous melatonin on tomato fruit properties. Sci Hortic 207:14–20

    Article  CAS  Google Scholar 

  • Liu W, Zhao D, Zheng C, Chen C, Peng X, Cheng Y, Wan H (2017) Genomic analysis of the ASMT gene family in Solanum lycopersicum. Molecules 22(11):1984

    Article  PubMed Central  CAS  Google Scholar 

  • Liu C, Chen L, Zhao R, Li R, Zhang S, Yu W, Sheng J, Shen L (2019a) Melatonin induces disease resistance to botrytis cinerea in tomato fruit by activating jasmonic acid signaling pathway. J Agric Food Chem 67(22):6116–6124

    Article  CAS  PubMed  Google Scholar 

  • Liu DD, Sun XS, Liu L, Shi HD, Chen SY, Zhao DK et al (2019b) Overexpression of the melatonin synthesis-related gene SlCOMT1 improves the resistance of tomato to salt stress. Molecules 24(8):1514

    Article  CAS  PubMed Central  Google Scholar 

  • Manchester LC, Coto-Montes A, Boga JA, Andersen LPH, Zhou Z, Galano A, Vriend J, Tan DX, Reiter RJ (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 59(4):403–419

    Article  CAS  PubMed  Google Scholar 

  • Mannino G, Pernici C, Serio G, Gentile C, Bertea CM (2021) Melatonin and phytomelatonin: chemistry, biosynthesis, metabolism, distribution and bioactivity in plants and animals-an overview. IJMS 22(18):9996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez V, Nieves-Cordones M, Lopez-Delacalle M, Rodenas R, Mestre TC, Garcia-Sanchez F, Rubio F, Nortes PA, Mittler R, Rivero RM (2018) Tolerance to stress combination in tomato plants: new insights in the protective role of melatonin. Molecules 23(3):535

    Article  PubMed Central  CAS  Google Scholar 

  • McCord CP, Allen FP (1917) Evidences associating pineal gland function with alterations in pigmentation. J Exp Zool 23(1):207–224

    Article  CAS  Google Scholar 

  • Moroni I, Garcia-Bennett A, Chapman J, Grunstein RR, Gordon CJ, Comas M (2021) Pharmacokinetics of exogenous melatonin in relation to formulation, and effects on sleep: a systematic review. Sleep Med Rev 57:101431

    Article  PubMed  Google Scholar 

  • Moustafa-Farag M, Almoneafy A, Mahmoud A, Elkelish A, Arnao MB, Li L, Ai S (2019) Melatonin and its protective role against biotic stress impacts on plants. Biomol 10(1):54

    Google Scholar 

  • Mukherjee S, Bhatla SC (2021) Exogenous Melatonin modulates endogenous H2S homeostasis and L-cysteine desulfhydrase activity in salt-stressed tomato (Solanum lycopersicum L. var. cherry) seedling cotyledons. J Plant Growth Regul 40(6):2502–2514

    Article  CAS  Google Scholar 

  • Nawaz MA, Huang Y, Bie ZL, Ahmed W, Reiter RJ, Niu ML, Hameed S (2016) Melatonin: current status and future perspectives in plant science. Front Plant Sci 6:1230

    Article  PubMed  PubMed Central  Google Scholar 

  • Okazaki M, Ezura H (2009) Profiling of melatonin in the model tomato (Solanum lycopersicum L.) cultivar micro-Tom. J Pineal Res 46:338–343

    Article  CAS  PubMed  Google Scholar 

  • Okazaki M, Higuchi K, Hanawa Y, Shiraiwa Y, Ezura H (2009) Cloning and characterization of a Chlamydomonas reinhardtii cDNA arylalkylamine N-acetyltransferase and its use in the genetic engineering of melatonin content in the Micro-Tom tomato. J Pineal Res 46(4):373–382

    Article  CAS  PubMed  Google Scholar 

  • Okazaki M, Higuchi K, Aouini A, Ezura H (2010) Lowering intercellular melatonin levels by transgenic analysis of indoleamine 2,3-dioxygenase from rice in tomato plants. J Pineal Res 49(3):239–247

    Article  CAS  PubMed  Google Scholar 

  • Pang X, Wei YP, Cheng Y, Pan LZ, Ye QJ, Wang RQ, Ruan MY, Zhou GZ, Yao ZP, Li ZM, Yang YJ, Liu WC, Wan HJ (2018) The tryptophan decarboxylase in Solanum lycopersicum. Molecules 23(5):998

    Article  PubMed Central  CAS  Google Scholar 

  • Qi ZY, Wang KX, Yan MY, Kanwar MK, Li DY, Wijaya L, Alyemeni MN, Ahmad P, Zhou J (2018) Melatonin alleviates high temperature-induced pollen abortion in Solanum lycopersicum. Molecules 23(2):386

    Article  PubMed Central  CAS  Google Scholar 

  • Rehaman A, Mishra AK, Ferdose A, Per TS, Hanief M, Jan AT, Asgher M (2021) Melatonin in plant defense against abiotic stress. Forests 12(10):1404

    Article  Google Scholar 

  • Riga P, Medina S, Garcia-Flores LA, Gil-Izquierdo A (2014) Melatonin content of pepper and tomato fruits: effects of cultivar and solar radiation. Food Chem 156:347–352

    Article  CAS  PubMed  Google Scholar 

  • Sharafi Y, Aghdam MS, Luo ZS, Jannatizadeh A, Razavi F, Fard JR, Farmani B (2019) Melatonin treatment promotes endogenous melatonin accumulation and triggers GABA shunt pathway activity in tomato fruits during cold storage. Sci Horticult 254:222–227

    Article  CAS  Google Scholar 

  • Siddiqui MH, Alamri S, Al-Khaishany MY, Khan MN, Al-Amri A, Ali HM, Alaraidh IA, Alsahli AA (2019a) Exogenous melatonin counteracts NaCl-induced damage by regulating the antioxidant system, proline and carbohydrates metabolism in tomato seedlings. IJMS 20(2):353

    Article  PubMed Central  CAS  Google Scholar 

  • Siddiqui MH, Alamri S, Alsubaie QD, Ali HM, Ibrahim AA, Alsadon A (2019b) Potential roles of melatonin and sulfur in alleviation of lanthanum toxicity in tomato seedlings. Ecotoxicol Environ Saf 180:656–667

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Alamri S, Alsubaie QD, Ali HM (2020) Melatonin and gibberellic acid promote growth and chlorophyll biosynthesis by regulating antioxidant and methylglyoxal detoxification system in tomato seedlings under salinity. J Plant Growth Regul 39(4):1488–1502

    Article  CAS  Google Scholar 

  • Siddiqui MH, Khan MN, Mukherjee S, Basahi RA, Alamri S, Al-Amri AA, Alsubaie QD, Ali HM, Al-Munqedhi BMA, Almohisen IAA (2021) Exogenous melatonin-mediated regulation of K(+) /Na(+) transport, H(+) -ATPase activity and enzymatic antioxidative defence operate through endogenous hydrogen sulphide signalling in NaCl-stressed tomato seedling roots. Plant Biol (stuttg). https://doi.org/10.1111/plb.13296

    Article  Google Scholar 

  • Skene DJ, Papagiannidou E, Hashemi E, Snelling J, Lewis DFV, Fernandez M, Ioannides C (2001) Contribution of CYP1A2 in the hepatic metabolism of melatonin: studies with isolated microsomal preparations and liver slices. J Pineal Res 31(4):333–342

    Article  CAS  PubMed  Google Scholar 

  • Sturtz M, Cerezo AB, Cantos-Villar E, Garcia-Parrilla MC (2011) Determination of the melatonin content of different varieties of tomatoes (Lycopersicon esculentum) and strawberries (Fragaria ananassa). Food Chem 127(3):1329–1334

    Article  PubMed  CAS  Google Scholar 

  • Sun Q, Zhang N, Wang J, Zhang H, Li D, Shi J, Li R, Weeda S, Zhao B, Ren S, Guo YD (2015) Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. J Exp Bot 66(3):657–668

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Zhang N, Wang J, Cao Y, Li X, Zhang H, Zhang L, Tan DX, Guo YD (2016) A label-free differential proteomics analysis reveals the effect of melatonin on promoting fruit ripening and anthocyanin accumulation upon postharvest in tomato. J Pineal Res 61(2):138–153

    Article  CAS  PubMed  Google Scholar 

  • Sun QQ, Liu L, Zhang L, Lv HM, He Q, Guo LQ, Zhang XC, He HJ, Ren SX, Zhang N, Zhao B, Guo YD (2020a) Melatonin promotes carotenoid biosynthesis in an ethylene-dependent manner in tomato fruits. Plant Sci 298:110580

    Article  CAS  PubMed  Google Scholar 

  • Sun SS, Wen D, Yang WY, Meng QF, Shi QH, Gong BA (2020b) Overexpression of caffeic acid O-methyltransferase 1 (COMT1) increases melatonin level and salt stress tolerance in tomato plant. J Plant Growth Regul 39(3):1221–1235

    Article  CAS  Google Scholar 

  • Tan DX, Manchester LC, Di Mascio P, Martinez GR, Prado FM, Reiter RJ (2007a) Novel rhythms of N-1-acetyl-N-2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth: importance for phytoremediation. FASEB J 21(8):1724–1729

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ (2007b) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42(1):28–42

    Article  CAS  PubMed  Google Scholar 

  • Tiwari RK, Lal MK, Kumar R, Chourasia KN, Naga KC, Kumar D, Das SK, Zinta G (2021) Mechanistic insights on melatonin-mediated drought stress mitigation in plants. Physiol Plant 172(2):1212–1226

    Article  CAS  PubMed  Google Scholar 

  • Van Tassel DL, Roberts N, Lewy A, O’Neill SD (2001) Melatonin in plant organs. J Pineal Res 31(1):8–15

    Article  PubMed  Google Scholar 

  • Wang L, Zhao Y, Reiter RJ, He CJ, Liu GS, Lei Q, Zuo BX, Zheng XD, Li QT, Kong J (2014) Changes in melatonin levels in transgenic “Micro-Tom” tomato overexpressing ovine AANAT and ovine HIOMT genes. J Pineal Res 56(2):134–142

    Article  CAS  PubMed  Google Scholar 

  • Wang ML, Zhang T, Ding F (2019) Exogenous melatonin delays methyl jasmonate-triggered senescence in tomato leaves. Agronomy 9(12):795

    Article  CAS  Google Scholar 

  • Wang ML, Zhang SX, Ding F (2020a) Melatonin mitigates chilling-induced oxidative stress and photosynthesis inhibition in tomato plants. Antioxidants 9(3):218

    Article  PubMed Central  CAS  Google Scholar 

  • Wang XY, Zhang HJ, Xie Q, Liu Y, Lv HM, Bai RY, Ma R, Li XD, Zhang XC, Guo YD, Zhang N (2020b) SlSNAT interacts with HSP40, a molecular chaperone, to regulate melatonin biosynthesis and promote thermotolerance in tomato. Plant Cell Physiol 61(5):909–921

    Article  CAS  PubMed  Google Scholar 

  • Wang LF, Lu KK, Li TT, Zhang Y, Guo JX, Song RF, Liu WC (2021) Maize PHYTOMELATONIN RECEPTOR1 functions in plant osmotic and drought stress tolerance. J Exp Bot. https://doi.org/10.1093/jxb/erab553

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei J, Li DX, Zhang JR, Shan C, Rengel Z, Song ZB, Chen Q (2018) Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana. J Pineal Res 65(2):e12500

    Article  PubMed  CAS  Google Scholar 

  • Wen D, Gong B, Sun S, Liu S, Wang X, Wei M, Yang F, Li Y, Shi Q (2016) Promoting roles of melatonin in adventitious root development of Solanum lycopersicum L. by regulating auxin and nitric oxide signaling. Front Plant Sci 7:718

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie QR, Luo HT, Cheng XK, Li ZL, Lu W, He ZQ, Zhou XT (2020) Effects of melatonin on growth, non-photochemical quenching and related components in tomato seedlings under calcium nitrate stress. 2020 5th International Conference on Renewable Energy and Environmental Protection 621:012104

  • Xu W, Cai SY, Zhang Y, Wang Y, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Yu JQ, Reiter RJ, Zhou J (2016) Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. J Pineal Res 61(4):457–469

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Jing X, Tang H, Li X, Gong B, Shi Q (2019a) Using transcriptome to discover a novel melatonin-induced sodic alkaline stress resistant pathway in Solanum lycopersicum L. Plant Cell Physiol 60(9):2051–2064

    Article  CAS  PubMed  Google Scholar 

  • Yan YY, Sun SS, Zhao N, Yang WY, Shi QH, Gong B (2019b) COMT1 overexpression resulting in increased melatonin biosynthesis contributes to the alleviation of carbendazim phytotoxicity and residues in tomato plants. Environ Pollut 252:51–61

    Article  CAS  PubMed  Google Scholar 

  • Yang XL, Xu H, Li D, Gao X, Li TL, Wang R (2018) Effect of melatonin priming on photosynthetic capacity of tomato leaves under low-temperature stress. Photosynthetica 56(3):884–892

    Article  CAS  Google Scholar 

  • Yin Z, Lu J, Meng S, Liu Y, Mostafa I, Qi M, Li T (2019a) Exogenous melatonin improves salt tolerance in tomato by regulating photosynthetic electron flux and the ascorbate–glutathione cycle. J Plant Interact 14(1):453–463

    Article  CAS  Google Scholar 

  • Yin ZP, Lu JZ, Meng SD, Liu YL, Mostafa I, Qi MF, Li TL (2019b) Exogenous melatonin improves salt tolerance in tomato by regulating photosynthetic electron flux and the ascorbate-glutathione cycle. J Plant Interact 14(1):453–463

    Article  CAS  Google Scholar 

  • Zhou XT, Zhao HL, Cao K, Hu LP, Du TH, Baluska F, Zou ZR (2016) Beneficial roles of melatonin on redox regulation of photosynthetic electron transport and synthesis of D1 protein in tomato seedlings under salt stress. Front Plant Sci 7:1823

    PubMed  PubMed Central  Google Scholar 

  • Zhou R, Wan HJ, Jiang FL, Li XN, Yu XQ, Rosenqvist E, Ottosen CO (2020) The alleviation of photosynthetic damage in tomato under drought and cold stress by high CO(2)and melatonin. IJMS 21(15):5587

    Article  CAS  PubMed Central  Google Scholar 

  • Zhou R, Cen BJ, Jiang FL, Sun MT, Wen JQ, Cao X, Cui SY, Kong LP, Zhou NN, Wu Z (2022) Reducing the halotolerance gap between sensitive and resistant tomato by spraying melatonin. Agronomy 12(1):84

    Article  CAS  Google Scholar 

  • Zhu GY, Sha PF, Zhu XX, Shi XC, Shahriar M, Zhou YD, Wang SY, Laborda P (2021) Application of melatonin for the control of food-borne Bacillus species in tomatoes. Postharv Biol Technol 181:111656

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to EditSprings (https://www.editsprings.cn ) for the expert linguistic services provided.

Funding

This work was supported by the National Natural Science Foundation of China (31801870), the Natural Science Foundation of Chongqing of China (cstc2019jcyj-msxmX0361), the Fundamental Research Funds for the Central Universities (2020CDJQY-A059), the Foundation for After Post- Doctoral and Work in Chongqing (2019LY52) and Chongqing Innovation Support Plan for Studying Abroad and Returning to China (cx2019158).

Author information

Authors and Affiliations

Authors

Contributions

QX had the idea for the article, YZ, YC, YT and JL performed the literature search and data analysis, and QX and YZ drafted, ZH and GC critically revised the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qiaoli Xie.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Q., Zhang, Y., Cheng, Y. et al. The role of melatonin in tomato stress response, growth and development. Plant Cell Rep 41, 1631–1650 (2022). https://doi.org/10.1007/s00299-022-02876-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-022-02876-9

Keywords

Navigation