Skip to main content
Log in

Synergetic modulation of plant cadmium tolerance via MYB75-mediated ROS homeostasis and transcriptional regulation

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

MYB75 enhances plant cadmium tolerance by mediating ROS homeostasis and cadmium tolerance-related genes expression.

Abstract

Cadmium (Cd) is a heavy metal with biological toxicity, which can be detoxified through chelation and compartmentation in plants. Transcriptional regulation mediates plant Cd tolerance by modulating these processes. However, the mechanism remains to be studied. Our results showed a previously unknown function of MYB75 transcription factor in the regulation of Cd tolerance. Cd exposure stimulates anthocyanin accumulation by raising MYB75 expression. Enhanced Cd tolerance was observed in the MYB75-overexpressing plants, whereas increased Cd sensitivity was found in the MYB75 loss-of-function mutants. Under Cd stress conditions, lower reactive oxygen species (ROS) levels were detected in MYB75-overexpressing plants than in wild type plants. In contrast, higher ROS levels were found in MYB75 loss-of-function mutants. Overexpression of MYB75 was associated with increased glutathione (GSH) and phytochelatin (PC) content under Cd exposure. Furthermore, the expression of Cd stress-related gene including ACBP2 and ABCC2 was elevated in MYB75-overexpressing plants, and this upregulation was mediated through the mechanism by which MYB75 directly bind to the promoter of ACBP2 and ABCC2. Our findings reveal an important role for MYB75 in the regulation of plant Cd tolerance via anthocyanin-mediated ROS homeostasis, and through upregulation of Cd stress-related gene at the transcriptional level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agarwal P, Mitra M, Banerjee S, Roy S (2020) MYB4 transcription factor, a member of R2R3-subfamily of MYB domain protein, regulates cadmium tolerance via enhanced protection against oxidative damage and increases expression of PCS1 and MT1C in Arabidopsis. Plant Sci 297:110501

    Article  CAS  PubMed  Google Scholar 

  • Allan AC, Espley RV (2018) MYBs drive novel consumer traits in fruits and vegetables. Trends Plant Sci 23:693–705

    Article  CAS  PubMed  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Behrens CE, Smith KE, Iancu CV, Choe JY, Dean JV (2019) Transport of anthocyanins and other flavonoids by the Arabidopsis ATP-binding Cassette transporter AtABCC2. Sci Rep 9:437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhargava A, Mansfield SD, Hall HC, Douglas CJ, Ellis BE (2010) MYB75 functions in regulation of secondary cell wall formation in the Arabidopsis inflorescence stem. Plant Physiol 154:1428–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang JD, Huang S, Konishi N, Wang P, Chen J, Huang XY, Ma JF, Zhao FJ (2020) Overexpression of the manganese/cadmium transporter OsNRAMP5 reduces cadmium accumulation in rice grain. J Exp Bot 71:5705–5715

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Yang LB, Yan XX, Liu YL, Wang R, Fan TT, Ren YB, Tang XF, Xiao FM, Liu YS, Cao SQ (2016) Zinc-finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis. Plant Physiol 171:707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemens S (2019) Safer food through plant science: reducing toxic element accumulation in crops. J Exp Bot 70:5537–5557

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Ma JF (2016) Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu Rev Plant Biol 67:489–512

    Article  CAS  PubMed  Google Scholar 

  • Corso M, Schvartzman MS, Guzzo F, Souard F, Malkowski E, Hanikenne M, Verbruggen N (2018) Contrasting cadmium resistance strategies in two metallicolous populations of Arabidopsis halleri. New Phytol 218:283–297

    Article  CAS  PubMed  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940

    Article  CAS  PubMed  Google Scholar 

  • Dai LP, Dong XJ, Ma HH (2012) Molecular mechanism for cadmium-induced anthocyanin accumulation in Azolla imbricata. Chemosphere 87:319–325

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Jia Y, Shi Y, Zhang X, Song C, Gong Z, Yang S (2018) OST1-mediated BTF3L phosphorylation positively regulates CBFs during plant cold responses. EMBO J 37:e98228

    PubMed  PubMed Central  Google Scholar 

  • Dobrikova AG, Apostolova EL, Hanc A, Yotsova E, Borisova P, Sperdouli I, Adamakis IS, Moustakas M (2021) Cadmium toxicity in Salvia sclarea L.: an integrative response of element uptake, oxidative stress markers, leaf structure and photosynthesis. Ecotoxicol Environ Saf 209:111851

    Article  CAS  PubMed  Google Scholar 

  • Du ZY, Chen MX, Chen QF, Xiao S, Chye ML (2013) Overexpression of Arabidopsis acyl-CoA-binding protein ACBP2 enhances drought tolerance. Plant Cell Environ 36:300–314

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Xiao S, Li HY, Tsao SW, Chye ML (2009) Arabidopsis thaliana acyl-CoA-binding protein ACBP2 interacts with heavy-metal-binding farnesylated protein AtFP6. New Phytol 181:89–102

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Li HY, Xiao S, Chye ML (2010) Acyl-CoA-binding protein 2 binds lysophospholipase 2 and lysoPC to promote tolerance to cadmium-induced oxidative stress in transgenic Arabidopsis. Plant J 62:989–1003

    CAS  PubMed  Google Scholar 

  • Glinska S, Gapinska M (2013) The effect of pre-incubation of Allium cepa L. roots in the ATH-rich extract on Pb uptake and localization. Protoplasma 250:601–611

    Article  CAS  PubMed  Google Scholar 

  • González A, Laporte D, Moenne A (2021) Cadmium accumulation involves synthesis of glutathione and phytochelatins, and activation of CDPK, CaMK, CBLPK, and MAPK signaling pathways in Ulva compressa. Front Plant Sci. https://doi.org/10.3389/fpls.2021.669096

    Article  PubMed  PubMed Central  Google Scholar 

  • Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, Wenjun M, Farooq M (2021) Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicol Environ Saf 211:111887

    Article  CAS  PubMed  Google Scholar 

  • Han YY, Fan TT, Zhu XY, Wu X, Ouyang J, Jiang L, Cao SQ (2019) WRKY12 represses GSH1 expression to negatively regulate cadmium tolerance in Arabidopsis. Plant Mol Biol 99:149–159

    Article  CAS  PubMed  Google Scholar 

  • He YQ, Zhang XY, Li LY, Sun ZT, Li JM, Chen XY, Hong GJ (2021) SPX4 interacts with both PHR1 and PAP1 to regulate critical steps in phosphorus-status-dependent anthocyanin biosynthesis. New Phytol 230:205–217

    Article  CAS  PubMed  Google Scholar 

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette ML, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765

    Article  CAS  PubMed  Google Scholar 

  • Huybrechts M, Cuypers A, Deckers J, Iven V, Vandionant S, Jozefczak M, Hendrix S (2019) Cadmium and Plant development: an agony from seed to seed. Int J Mol Sci 20:3971

    Article  CAS  PubMed Central  Google Scholar 

  • Lei X, Liu WH, Zhao JM, You MH, Xiong CH, Xiong Y, Xiong YL, Yu QQ, Bai SQ, Ma X (2020) comparative physiological and proteomic analysis reveals different involvement of proteins during artificial aging of Siberian wildrye seeds. Plants (Basel) 9:1370

    Article  CAS  Google Scholar 

  • Li QF, He JX (2016) BZR1 Interacts with HY5 to mediate brassinosteroid- and light-regulated cotyledon opening in Arabidopsis in darkness. Mol Plant 9:113–125

    Article  CAS  PubMed  Google Scholar 

  • Li P, Li YJ, Zhang FJ, Zhang GZ, Jiang XY, Yu HM, Hou BK (2017) The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant J 89:85–103

    Article  CAS  PubMed  Google Scholar 

  • Luo JS, Yang Y, Gu T, Wu Z, Zhang Z (2019) The Arabidopsis defensin gene AtPDF2.5 mediates cadmium tolerance and accumulation. Plant Cell Environ 42:2681–2695

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19

    Article  CAS  PubMed  Google Scholar 

  • Mwamba TM, Islam F, Ali B, Lwalaba JLW, Gill RA, Zhang F, Farooq MA, Ali S, Ulhassan Z, Huang Q, Zhou W, Wang J (2020) Comparative metabolomic responses of low- and high-cadmium accumulating genotypes reveal the cadmium adaptive mechanism in Brassica napus. Chemosphere 250:126308

    Article  CAS  PubMed  Google Scholar 

  • Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, Michael AJ, Tohge T, Yamazaki M, Saito K (2014) Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J 77:367–379

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  PubMed  Google Scholar 

  • Norris KM, Okie W, Yakaitis CL, Pazdro R (2016) The anthocyanin cyanidin-3-O-beta-glucoside modulates murine glutathione homeostasis in a manner dependent on genetic background. Redox Biol 9:254–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288

    Article  CAS  PubMed  Google Scholar 

  • Sebastian A, Prasad MNV (2018) Exogenous citrate and malate alleviate cadmium stress in Oryza sativa L.: probing role of cadmium localization and iron nutrition. Ecotoxicol Environ Saf 166:215–222

    Article  CAS  PubMed  Google Scholar 

  • Sheng Y, Yan X, Huang Y, Han Y, Zhang C, Ren Y, Fan T, Xiao F, Liu Y, Cao S (2019) The WRKY transcription factor, WRKY13, activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis. Plant Cell Environ 42:891–903

    Article  CAS  PubMed  Google Scholar 

  • Song WY, Park J, Mendoza-Cozatl DG, Suter-Grotemeyer M, Shim D, Hortensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI, Lee Y, Martinoia E (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci USA 107:21187–21192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szopinski M, Sitko K, Gieron Z, Rusinowski S, Corso M, Hermans C, Verbruggen N, Malkowski E (2019) Toxic effects of Cd and Zn on the photosynthetic apparatus of the Arabidopsis halleri and Arabidopsis arenosa pseudo-metallophytes. Front Plant Sci 10:748

    Article  PubMed  PubMed Central  Google Scholar 

  • Szopinski M, Sitko K, Rusinowski S, Zieleznik-Rusinowska P, Corso M, Rostanski A, Rojek-Jelonek M, Verbruggen N, Malkowski E (2020) Different strategies of Cd tolerance and accumulation in Arabidopsis halleri and Arabidopsis arenosa. Plant Cell Environ 43:3002–3019

    Article  CAS  PubMed  Google Scholar 

  • Vazquez A, Recalde L, Cabrera A, Groppa MD, Benavides MP (2020) Does nitrogen source influence cadmium distribution in Arabidopsis plants? Ecotoxicol Environ Saf 191:110163

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  PubMed  Google Scholar 

  • Waszczak C, Carmody M, Kangasjarvi J (2018) Reactive oxygen species in plant signaling. Annu Rev Plant Biol 69:209–236

    Article  CAS  PubMed  Google Scholar 

  • Wong CKE, Cobbett CS (2009) HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol 181:71–78

    Article  CAS  PubMed  Google Scholar 

  • Wong CKE, Jarvis RS, Sherson SM, Cobbett CS (2009) Functional analysis of the heavy metal binding domains of the Zn/Cd-transporting ATPase, HMA2, in Arabidopsis thaliana. New Phytol 181:79–88

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Han Y, Zhu X, Shah A, Wang W, Sheng Y, Fan T, Cao S (2019) Negative regulation of cadmium tolerance in Arabidopsis by MMDH2. Plant Mol Biol 101:507–516

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Su NN, Yue XM, Fang B, Zou JW, Chen YH, Shen ZG, Cui J (2021) IRT1 and ZIP2 were involved in exogenous hydrogen-rich water-reduced cadmium accumulation in Brassica chinensis and Arabidopsis thaliana. J Hazard Mater 407:124599

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Gao W, Chen QF, Ramalingam S, Chye ML (2008) Overexpression of membrane-associated acyl-CoA-binding protein ACBP1 enhances lead tolerance in Arabidopsis. Plant J 54:141–151

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Dubos C, Lepiniec L (2015) Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20:176–185

    Article  CAS  PubMed  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Li L, Li L, Guo M, Chory J, Yin Y (2008) Modulation of brassinosteroid-regulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc Natl Acad Sci U S A 105:7618–7623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DW, Xu F, Zhang ZW, Chen YE, Du JB, Jia SD, Yuan S, Lin HH (2010) Effects of light on cyanide-resistant respiration and alternative oxidase function in Arabidopsis seedlings. Plant Cell Environ 33:2121–2131

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Wang R, Ju Q, Li W, Tran LP, Xu J (2019) The R2R3-MYB transcription factor MYB49 regulates cadmium accumulation. Plant Physiol 180:529–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Cai W, Ji TT, Ye L, Lu YT, Yuan TT (2020) WRKY13 enhances cadmium tolerance by promoting d-CYSTEINE DESULFHYDRASE and hydrogen sulfide production. Plant Physiol 183:345–357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang D, Tan W, Yang F, Han Q, Deng X, Guo H, Liu B, Yin Y, Lin H (2021) A BIN2-GLK1 signaling module integrates brassinosteroid and light signaling to repress chloroplast development in the dark. Dev Cell 56:310-324e7

    Article  CAS  PubMed  Google Scholar 

  • Zheng T, Tan W, Yang H, Zhang L, Li T, Liu B, Zhang D, Lin H (2019) Regulation of anthocyanin accumulation via MYB75/HAT1/TPL-mediated transcriptional repression. PLoS Genet 15:e1007993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng T, Li Y, Lei W, Qiao K, Liu B, Zhang D, Lin H (2020) SUMO E3 Ligase SIZ1 stabilizes MYB75 to regulate anthocyanin accumulation under high light conditions in Arabidopsis. Plant Sci 292:110355

    Article  CAS  PubMed  Google Scholar 

  • Zheng T, Li YL, Lei W, Qiao K, Liu BH, Zhang DW, Lin HH (2020) SUMO E3 Ligase SIZ1 stabilizes MYB75 to regulate anthocyanin accumulation under high light conditions in Arabidopsis. Plant Sci 292:110355

    Article  CAS  PubMed  Google Scholar 

  • Zou LJ, Deng XG, Han XY, Tan WR, Zhu LJ, Xi DH, Zhang DW, Lin HH (2016) Role of transcription factor HAT1 in modulating Arabidopsis thaliana response to cucumber mosaic virus. Plant Cell Physiol 57:1879–1889

    Article  CAS  PubMed  Google Scholar 

  • Zou MM, Zhou SL, Zhou YJ, Jia ZY, Guo TW, Wang JX (2021) Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: a review. Environ Pollut 280:116965

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The pap1-D and myb75-c were kindly provided by Prof. Daoxin Xie and Prof. Jinlong Qiu respectively. The 35S: CAT2 and 35S: CAT3 were kindly provided by Prof Mingyi Bai. This work was financially supported by the grants from the National Natural Science Foundation of China (http://www.nsfc.gov.cn/) [32100240 to TZ]; the project of Starting Research Fund from Sichuan Normal University [024341977001].

Funding

National Natural Science Foundation of China, 32100240, Starting Research Fund from Sichuan Normal University, 24341977001.

Author information

Authors and Affiliations

Authors

Contributions

DWZ conceived and supervised the study. TZ and FY designed experiments and analyzed data. TZ and XBL performed experiments. TZ and DWZ wrote the manuscript.

Corresponding author

Correspondence to Dawei Zhang.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Additional information

Communicated by Chun-Hai Dong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Supplementary file2 (PDF 1897 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, T., Lu, X., Yang, F. et al. Synergetic modulation of plant cadmium tolerance via MYB75-mediated ROS homeostasis and transcriptional regulation. Plant Cell Rep 41, 1515–1530 (2022). https://doi.org/10.1007/s00299-022-02871-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-022-02871-0

Keywords

Navigation