Skip to main content
Log in

Identification of apple TFL1-interacting proteins uncovers an expanded flowering network

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

MdTFL1, a floral repressor, forms protein complexes with several proteins and could compete with MdFT1 to regulate reproductive development in apple.

Abstract

Floral transition is a key developmental stage in the annual growth cycle of perennial fruit trees that directly determines the fruit development in the subsequent stage. FLOWERING LOCUS T (FT)/TERMINAL FLOWER1 (TFL1) family is known to play a vital regulatory role in plant growth and flowering. In apple, the two TFL1-like genes (MdTFL1-1 and MdTFL1-2) function as floral inhibitors; however, their mechanism of action is still largely unclear. This study aimed to functionally validate MdTFL1 and probe into its mechanism of action in apple. MdTFL1-1 and MdTFL1-2 were expressed mainly in stem and apical buds of vegetative shoots, with little expression in flower buds and young fruit. Expression of MdTFL1-1 and MdTFL1-2 rapidly decreased during floral induction. On the other hand, transgenic Arabidopsis, which ectopically expressed MdTFL1-1 or MdTFL1-2, flowered later than wild-type plants; demonstrating their in planta capability to function redundantly as flower repressors. Furthermore, we identified hundreds of novel interaction proteins of the two apple MdTFL1 proteins using yeast two-hybrid screens. Independent experiments for several proteins confirmed the yeast two-hybrid interactions. Among them, the transcription factor Nuclear Factor-Y subunit C (MdNF-YC2) functions as a promoter of flowering in Arabidopsis by activating LEAFY (LFY) and APETALA1 (AP1) expression. MdFT1 showed a similar interaction pattern as MdTFL1, implying a possible antagonistic action in the regulation of flowering. These newly identified TFL1-interacting proteins (TIPs) not only expand the floral regulatory network, but may also introduce new roles for TFL1 in plant development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All data used in this research are included in this published article and its supplementary information files.

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y et al (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    Article  CAS  PubMed  Google Scholar 

  • Ahn JH, Miller D, Winter VJ, Banfield MJ, Jeong HL, So YY et al (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 25:605–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai S, Tuan PA, Saito T, Ito A, Ubi BE, Ban Y, Moriguchi T (2017) Repression of TERMINAL FLOWER1 primarily mediates floral induction in pear (Pyrus pyrifolia Nakai) concomitant with change in gene expression of plant hormone-related genes and transcription factors. J Exp Bot 68:4899–4914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benlloch R, Berbel A, Serrano-Mislata A, Madueño F (2007) Floral initiation and inflorescence architecture: A comparative view. Ann Bot 100:659–676

    Article  PubMed  PubMed Central  Google Scholar 

  • Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting paul. Plant Cell 16:18–31

    Article  Google Scholar 

  • Bradley D, Ratcliffe O, Vincen C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83

    Article  CAS  PubMed  Google Scholar 

  • Buban T, Faust M (1982) Flower bud induction in apple trees: internal control and differentiation. Hortic Rev 4:174–203

    CAS  Google Scholar 

  • Cao S, Kumimoto RW, Gnesutta N, Calogero AM, Mantovani R, Holt BF (2014) A distal CCAAT/NUCLEAR FACTOR Y complex promotes chromatin looping at the FLOWERING LOCUS T promoter and regulates the timing of flowering in Arabidopsis. Plant Cell 26:1009–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conti L, Bradley D (2007) TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. Plant Cell 19:767–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esumi T, Tao R, Yonemori K (2005) Isolation of leafy and terminal flower 1 homologues from six fruit tree species in the subfamily Maloideae of the Rosaceae. Sex Plant Reprod 17:277–287

    Article  CAS  Google Scholar 

  • Flachowsky H, Szankowski I, Waidmann S, Peil A, Tränkner C, Hanke MV (2012) The MdTFL1 gene of apple (Malus × domestica Borkh.) reduces vegetative growth and generation time. Tree Physiol 32:1288–1301

    Article  CAS  PubMed  Google Scholar 

  • Foster T, Johnston R, Seleznyova A (2003) A morphological and quantitative characterization of early floral development in apple (Malus × domestica Borkh.). Ann Bot 92:199–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Freiman A, Shlizerman L, Golobovitch S, Yablovitz Z, Korchinsky R, Cohen Y et al (2012) Development of a transgenic early flowering pear (Pyrus communis L.) genotype by RNAi silencing of PcTFL1-1 and PcTFL1-2. Planta 235:1239–1251

    Article  CAS  PubMed  Google Scholar 

  • Goretti D, Silvestre M, Collani S, Langenecker T, Méndez C, Madueño F, Schmid M (2020) TERMINAL FLOWER1 functions as a mobile transcriptional cofactor in the shoot apical meristem. Plant Physiol 182:2081–2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottschalk C, Zhang S, Schwallier P, Rogers S, Bukovac MJ, van Nocker S (2021) Genetic mechanisms associated with floral initiation and the repressive effect of fruit on flowering in apple (Malus × domestica Borkh). PLoS ONE 16:1–23

    Article  Google Scholar 

  • Gunesekera B, Torabinejad J, Robinson J, Gillaspy GE (2007) Inositol polyphosphate 5-phosphatases 1 and 2 are required for regulating seedling growth. Plant Physiol 143:1408–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haberman A, Ackerman M, Crane O, Kelner JJ, Costes E, Samach A (2016) Different flowering response to various fruit loads in apple cultivars correlates with degree of transcript reaccumulation of a TFL1-encoding gene. Plant J 87:161–173

    Article  CAS  PubMed  Google Scholar 

  • Hackenberg D, Keetman U, Grimm B (2012) Homologous NF-YC2 subunit from Arabidopsis and tobacco is activated by photooxidative stress and induces flowering. Int J Mol Sci 13:3458–3477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanano S, Goto K (2011) Arabidopsis terminal flower1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell 23:3172–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanke M-V, Flachowsky H, Peil A, Hättasch C (2007) No flower no fruit—genetic potentials to trigger flowering in fruit trees. Genes Genomes Genomics 1:1–20

    Google Scholar 

  • Hanzawa Y, Money T, Bradley D (2005) A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci USA 102:7748–7753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hättasch C, Flachowsky H, Kapturska D, Hanke MV (2008) Isolation of flowering genes and seasonal changes in their transcript levels related to flower induction and initiation in apple (Malus domestica). Tree Physiol 28:1459–1466

    Article  PubMed  Google Scholar 

  • Hou X, Zhou J, Liu C, Liu L, Shen L, Yu H (2014) Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis. Nat Commun 5:1–14

    Article  CAS  Google Scholar 

  • Hwang YH, Kim SK, Lee KC, Chung YS, Lee JH, Kim JK (2016) Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time. Plant Cell Rep 35:857–865

    Article  CAS  PubMed  Google Scholar 

  • Hwang K, Susila H, Nasim Z, Jung JY, Ahn JH (2019) Arabidopsis ABF3 and ABF4 transcription factors act with the NF-YC complex to regulate SOC1 expression and mediate drought-accelerated flowering. Mol Plant 12:489–505

    Article  CAS  PubMed  Google Scholar 

  • Iwata H, Gaston A, Remay A, Thouroude T, Jeauffre J, Kawamura K, Saint OLH, Araki T, Denoyes B, Foucher F (2012) The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Plant J 69:116–125

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Wang S, Dang L, Wang S, Chen H, Wu Y, Jiang X, Wu P (2005) A novel short-root gene encodes a glucosamine-6-phosphate acetyltransferase required for maintaining normal root cell shape in rice. Plant Physiol 138:232–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko-Suzuki M, Kurihara-Ishikawa R, Okushita-Terakawa C, Kojima C, Nagano-Fujiwara M, Ohki I, Tsuji H, Shimamoto K, Taoka KI (2018) TFL1-like proteins in rice antagonize rice FT-like protein in inflorescence development by competition for complex formation with 14-3-3 and FD. Plant Cell Physiol 59:458–468

    Article  CAS  PubMed  Google Scholar 

  • Kieffer M, Master V, Waites R, Davies B (2011) TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. Plant J 68:147–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SG, Kim SY, Park CM (2007) A membrane-associated NAC transcription factor regulates salt-responsive flowering via flowering locus T in Arabidopsis. Planta 226:647–654

    Article  CAS  PubMed  Google Scholar 

  • Kotake T, Takada S, Nakahigashi K, Ohto M, Goto K (2003) Arabidopsis TERMINAL FLOWER 2 gene encodes a heterochromatin protein 1 homolog and represses both FLOWERING LOCUS T to regulate flowering time and several floral homeotic genes. Plant Cell Physiol 44:555–564

    Article  CAS  PubMed  Google Scholar 

  • Kotoda N, Wada M (2005) MdTFL1, a TFL1-like gene of apple, retards the transition from the vegetative to reproductive phase in transgenic Arabidopsis. Plant Sci 168:95–104

    Article  CAS  Google Scholar 

  • Kotoda N, Wada M, Masuda T, Soejima J (2003) The break-through in the reduction of juvenile phase in apple using transgenic approaches. Acta Hortic 625:337–343

    Article  CAS  Google Scholar 

  • Kotoda N, Iwanami H, Takahashi S, Abe K (2006) Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. J Am Soc Hortic Sci 131:74–81

    Article  CAS  Google Scholar 

  • Kotoda N, Hayashi H, Suzuki M et al (2010) Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus × domestica borkh.). Plant Cell Physiol 51:561–575

    Article  CAS  PubMed  Google Scholar 

  • Kumimoto RW, Adam L, Hymus GJ, Repetti PP, Reuber TL, Marion CM, Hempel FD, Ratcliffe OJ (2008) The Nuclear Factor Y subunits NF-YB2 and NF-YB3 play additive roles in the promotion of flowering by inductive long-day photoperiods in Arabidopsis. Planta 228:709–723

    Article  CAS  PubMed  Google Scholar 

  • Kumimoto RW, Zhang Y, Siefers N, Holt BF (2010) NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod-dependent flowering in Arabidopsis thaliana. Plant J 63:379–391

    Article  CAS  PubMed  Google Scholar 

  • Levy YY, Dean C (1998) The transition to flowering. Plant Cell 10:1973–1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Yang Y, Hu Y, Zhou L, Li Y, Hou X (2018) Temporal-specific interaction of NF-YC and CURLY LEAF during the floral transition regulates flowering. Plant Physiol 177:105–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using Real-Time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lucero LE, Manavella PA, Gras DE, Ariel FD, Gonzalez DH (2017) Class I and class II TCP transcription factors modulate SOC1-dependent flowering at multiple levels. Mol Plant 10:1571–1574

    Article  CAS  PubMed  Google Scholar 

  • Miller SS (1982) Regrowth, flowering and fruit quality of ‘Delicious’ apple trees as influenced by summer pruning. J Am Soc Hortic Sci 107:975–978

    Article  Google Scholar 

  • Mimida N, Kotoda N, Ueda T, Igarashi M, Hatsuyama Y, Iwanami H, Moriya S, Abe K (2009) Four TFL1/CEN-like genes on distinct linkage groups show different expression patterns to regulate vegetative and reproductive development in apple (Malus × domestica Borkh.). Plant Cell Physiol 50:394–412

    Article  CAS  PubMed  Google Scholar 

  • Mimida N, Ureshino A, Tanaka N, Shigeta N, Sato N, Moriya-Tanaka Y et al (2011) Expression patterns of several floral genes during flower initiation in the apical buds of apple (Malus × domestica Borkh.) revealed by in situ hybridization. Plant Cell Rep 30:1485–1492

    Article  CAS  PubMed  Google Scholar 

  • Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: Interacting pathways as a basis for diversity. Plant Cell 14:S111–S130

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa M, Shimamoto K, Kyozuka J (2002) Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J 29:743–750

    Article  CAS  PubMed  Google Scholar 

  • Ning YQ, Ma ZY, Huang HW, Mo H, Zhao TT, Li L, Cai T, Chen S, Ma L, He XJ (2015) Two novel NAC transcription factors regulate gene expression and flowering time by associating with the histone demethylase JMJ14. Nucleic Acids Res 43:1469–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petroni K, Kumimoto RW, Gnesutta N, Calvenzani V, Fornari M, Tonelli C, Holt BF, Mantovani R (2013) The promiscuous life of plant Nuclear Factor Y transcription factors. Plant Cell 24:4777–4792

    Article  Google Scholar 

  • Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, Zamir D, Lifschitz E (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125:1979–1989

    Article  CAS  PubMed  Google Scholar 

  • Pnueli L, Gutfinger T, Hareven D, Ben-Naim O, Ron N, Adir N, Lifschitz E (2001) Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell 13:2687–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randoux M, Davière JM, Jeauffre J, Thouroude T, Pierre S, Toualbia Y et al (2014) RoKSN, a floral repressor, forms protein complexes with RoFD and RoFT to regulate vegetative and reproductive development in rose. New Phytol 202:161–173

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe OJ, Amaya I, Vincent CA, Rothstein S, Carpenter R, Coen ES, Bradley DJ (1998) A common mechanism controls the life cycle and architecture of plants. Development 125:1609–1615

    Article  CAS  PubMed  Google Scholar 

  • Resentini F, Felipo-Benavent A, Colombo L, Blázquez MA, Alabadí D, Masiero S (2015) TCP14 and TCP15 mediate the promotion of seed germination by gibberellins in Arabidopsis thaliana. Mol Plant 8:482–485

    Article  CAS  PubMed  Google Scholar 

  • Sohn EJ, Rojas-Pierce M, Pan S, Carter C, Serrano-Mislata A, Madueno F, Rojo E, Surpin M, Raikhel NV (2007) The shoot meristem identity gene TFL1 is involved in flower development and trafficking to the protein storage vacuole. Proc Natl Acad Sci USA 104:18801–18806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turck F, Roudier F, Farrona S, Martin-Magniette ML, Guillaume E, Buisine N et al (2007) Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet 3:0855–0866

    Article  CAS  Google Scholar 

  • Waadt R, Schmidt LK, Lohse M, Hashimoto K, Bock R, Kudla J (2008) Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. Plant J 56:505–516

    Article  CAS  PubMed  Google Scholar 

  • Wen C, Zhao W, Liu W et al (2019) CsTFL1 inhibits determinate growth and terminal flower formation through interaction with CsNOT2a in cucumber. Development 146:dev180166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    Article  CAS  PubMed  Google Scholar 

  • Wilkie JD, Sedgley M, Olesen T (2008) Regulation of floral initiation in horticultural trees. J Exp Bot 59:3215–3228

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Niu Q, Li J, Zheng X, Ma Y, Bai S, Teng Y (2018) PpHB22, a member of HD-Zip proteins, activates PpDAM1 to regulate bud dormancy transition in ‘suli’ pear (Pyrus pyrifolia White Pear Group). Plant Physiol Biochem 127:355–365

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Gottschalk C, Van Nocker S (2019) Genetic mechanisms in the repression of flowering by gibberellins in apple (Malus x domestica Borkh.). BMC Genomics 20:1–15

    Article  Google Scholar 

  • Zhang B, Li C, Li Y, Yu H (2020) Mobile terminal floweR1 determines seed size in Arabidopsis. Nat Plants 6:1146–1157

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Klasfeld S, Jeong CW, Jin R, Goto K, Yamaguchi N, Wagner D (2020) TERMINAL FLOWER 1-FD complex target genes and competition with FLOWERING LOCUS T. Nat Commun 11:1–12

    Article  Google Scholar 

  • Zuo X, Wang S, Yang H, Tahir MM, Xiang W, Zhen S et al (2021) Genome-wide identification of the 14–3–3 gene family and its participation in floral transition by interacting with TFL1/FT in apple. BMC Genomics 22:1–17

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Science Foundation of China (31872937, 31672101), the National Key Research and Development Project (2019YFD1001803), the Key Science and Technology Project of Shaanxi province (2020zdzx03–01–04), and the China Apple Research System (CARS-27).

Author information

Authors and Affiliations

Authors

Contributions

ZD and ZXY designed the experiments. ZXY, XW, ZLZ, and GC performed the experiments. ZXY, AN, and ZCP analyzed the data. ZXY, XW, and ZD wrote and revised the manuscript. All authors participated in the research and approved the final manuscript.

Corresponding author

Correspondence to Dong Zhang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Communicated by Qiaochun Wang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2952 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, X., Xiang, W., Zhang, L. et al. Identification of apple TFL1-interacting proteins uncovers an expanded flowering network. Plant Cell Rep 40, 2325–2340 (2021). https://doi.org/10.1007/s00299-021-02770-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-021-02770-w

Keywords

Navigation