Skip to main content
Log in

Ectopic expression of finger millet calmodulin confers drought and salinity tolerance in Arabidopsis thaliana

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Overexpression of finger millet calmodulin imparts drought and salt tolerance in plants.

Abstract

Drought and salinity are major environmental stresses which affect crop productivity and therefore are major hindrance in feeding growing population world-wide. Calcium (Ca2+) signaling plays a crucial role during the plant's response to these stress stimuli. Calmodulin (CaM), a crucial Ca2+sensor, is involved in transducing the signal downstream in various physiological, developmental and stress responses by modulating a plethora of target proteins. The role of CaM has been well established in the model plant Arabidopsis thaliana for regulating various developmental processes, stress signaling and ion transport. In the current study, we investigate the CaM of Eleusine coracana (common name finger millet, known especially for its drought tolerance and superior Ca2+ content). In-silico analysis showed that Eleusine CaM (EcCaM) has greater similarity to rice CaM as compared to Arabidopsis CaM due to the presence of highly conserved four EF-hand domains. To decipher the in-planta function of EcCaM, we have adopted the gain-of-function approach by generating the 35S::EcCaM over-expression transgenic in Arabidopsis. Overexpression of EcCaM in Arabidopsis makes the plant tolerant to polyethylene glycol (PEG) induced drought and salt stress (NaCl) as demonstrated by post-germination based phenotypic assay, ion leakage, MDA and proline estimation, ROS detection under stressed and normal conditions. Moreover, EcCaM overexpression leads to hypersensitivity toward exogenously applied ABA at the seed germination stage. These findings reveal that EcCaM mediates tolerance to drought and salinity stress. Also, our results indicate that EcCaM is involved in modulating ABA signaling. Summarizing our results, we report for the first time that EcCaM is involved in modulating plants response to stress and this information can be used for the generation of future-ready crops that can tolerate a wide range of abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aleynova OA, Kiselev KV, Ogneva ZV, Dubrovina AS (2020) The grapevine calmodulin-like protein gene CML21 Is regulated by alternative splicing and involved in abiotic stress response. Int J Mol Sci 21:7939

    Article  CAS  PubMed Central  Google Scholar 

  • Ali GS, Reddy VS, Lindgren PB et al (2003) Differential expression of genes encoding calmodulin-bindingproteins in response to bacterial pathogens and inducers of defense responses. Plant Mol Biol 51:803–815

    Article  CAS  PubMed  Google Scholar 

  • An Y, Yang XX, Zhang L et al (2020) Alfalfa MsCBL4 enhances calcium metabolism but not sodium transport in transgenic tobacco under salt and saline-alkali stress. Plant Cell Rep 39:997–1011

    Article  CAS  PubMed  Google Scholar 

  • Arunanondchai P, Fei C, Fisher A et al (2018) How does climate change affect agriculture? The Routledge handbook of agricultural economics. Routledge, London, pp 191–210

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts- Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes JD, Balaguer L, Manrique E et al (1992) A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ Exp Bot 32:85–100

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Botella JR, Arteca RN (1994) Differential expression of two calmodulin genes in response to physical and chemical stimuli. Plant Mol Biol 24:757–766

    Article  CAS  PubMed  Google Scholar 

  • Bu Q, Li H, Zhao Q et al (2009) The Arabidopsis RING finger E3 ligase RHA2a is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development. Plant Physiol 150:463–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheong YH, Kim KN, Pandey GK (2003) CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15:1833–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi H, Hong J, Ha J et al (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cui XY, Du YT, Fu JD et al (2018) Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. BMC Plant Biol 18:93. https://doi.org/10.1186/s12870-018-1306-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeFalco TA, Bender KW, Snedden WA (2010) Breaking the code: Ca2+ sensors in plant signalling. Biochem J 425:27–40

    Article  CAS  Google Scholar 

  • Dida MM, Ramakrishnan SS, Bennetzen JL et al (2007) The genetic map of finger millet, Eleusine coracana. Theor Appl Genet 114:321–332

    Article  CAS  PubMed  Google Scholar 

  • Du LQ, Ali GS, Simons KA et al (2009) Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nat 457:1154-U1116

    Article  CAS  Google Scholar 

  • Fakrudin B, Kulkani RS, Shashidhar HE, Hittalmani S (2004) Genetic diversity assessment of finger millet, Eleusinecoracana (Gaertn), germplasm through RAPD analysis. Biodivers Int Newsl 138:50–54

    Google Scholar 

  • Farooq M, Wahid A, Lee DJ et al (2009) Advances in drought resistance of Rice. Crit Rev Plant Sci 28:199–217

    Article  CAS  Google Scholar 

  • Gao QY, Xiong TT, Li XP et al (2019) Calcium and calcium sensors in fruit development and ripening. SciHortic 253:412–421

    CAS  Google Scholar 

  • Gupta SM, Arora S, Mirza N et al (2017) Finger millet: a “certain” crop for an “uncertain” future and a solution to food insecurity and hidden hunger under stressful environments. Front Plant Sci 8:643

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Kudla J (2011) Calcium decoding mecahnism in plants. Biochimie 93:2054–2059

    Article  CAS  PubMed  Google Scholar 

  • He M, He HCQ, Ding NZ (2018) Abiotic stresses: General defenses of land plants and chances for engineering multistress tolerance. Front Plant Sci 9:1771

    Article  PubMed  PubMed Central  Google Scholar 

  • He X, Liu W, Li W et al (2020) Genome-wide identification and expression analysis of CaM/CML genes in Brassica napus under abiotic stress. J Plant Physiol 255:153251

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. https://doi.org/10.1016/S0168-9452(02)00037-7

    Article  CAS  PubMed  Google Scholar 

  • Jamra G, Shah P, Agarwal A et al (2020) Elucidating the physio-morphological and biochemical responses towards PEG-induced drought stress in finger millet genotypes. Int J Curr Microbiol App Sci 9:1672–1687

    Article  CAS  Google Scholar 

  • Kim BG, Waadt R, Cheong YH et al (2007) The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J 52:473–484

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Mirza N, Charan T et al (2014a) Isolation, characterization and immunolocalization of a seed dominant CaM from Finger Millet (Eleusine coracana L. Gartn.) for studying its functional role in differential accumulation of calcium in developing grains. Appl Biochem Biotechnol 172:2955–2973

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Yusuf MA, Singh P et al (2014b) Histochemical detection of superoxide and H2O2 accumulation in Brassica juncea seedlings. Bio-Protoc 4(8):1108

    Article  Google Scholar 

  • Kumar A, Gaur VS, Goel A, Gupta AK (2015) De novo assembly and characterization of developing spikes transcriptome of finger millet (Eleusine coracana): a minor crop having nutraceutical properties. Plant Mol Biol Rep 33:905–922

    Article  CAS  Google Scholar 

  • Kumar A, Metwal M, Kaur S et al (2016a) Nutraceutical value of finger millet [Eleusine coracana (L.) Gaertn.], and their improvement using omics approaches. Front Plant Sci 7:934

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016b) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li ZG, Gong M (2009) Involvement of calcium and calmodulin in mechanical stimulation-induced heat tolerance in tobacco (Nicotiana tabacum L.) suspension cultured cells. Plant Physiol Commun 45:363–365

    Google Scholar 

  • Li C, Meng D, Zhang J, Cheng L (2019) Genome-wide identification and expression analysis of calmodulin and calmodulin-like genes in apple (Malusxdomestica). Plant Physiol Biochem 139:600–612

    Article  CAS  PubMed  Google Scholar 

  • Luan S (2009) The CBL-CIPK network in plant calcium signaling. Trends Plant Sci 14:37–42

    Article  CAS  PubMed  Google Scholar 

  • Luan S, Kudla J, Rodriguez-Concepcion M et al (2002) Calmodulins and calcineurin B–like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell 14:389–400

    Article  CAS  Google Scholar 

  • Magnan F, Ranty B, Charpenteau M et al (2008) Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J 56:575–589

    Article  CAS  PubMed  Google Scholar 

  • McDonough CM, Rooney LW, Saldivar S (2000) The millets. In: Kulp K, Ponte JG Jr (eds) Handbook of cereal science and technology. Marcel Dekker Inc., New York, pp 177–195

  • Mohanta TK, Yadav D, Khan AL et al (2019) Molecular players of EF-hand containing calcium signaling event in plants. Int J Mol Sci 20:1476

    Article  CAS  PubMed Central  Google Scholar 

  • Munir S, Liu H, Xing Y et al (2016) Overexpression of calmodulin-like (ShCML44) stress-responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses. Sci Rep 6(1):1–20

    Article  CAS  Google Scholar 

  • Murray MB, Cape JN, Fowler D (1989) Quantification of frost damage in plant tissues by rates of electrolyte leakage. New Phytol 113:307–311

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (1996) Lost Crops of Africa: grains, vol I. The National Academies Press, Washington, DC

    Google Scholar 

  • Noman M, Jameel A, Qiang WD et al (2019) Overexpression of GmCAMTA12 enhanced drought tolerance in Arabidopsis and soybean. Int J Mol Sci 20:4849

    Article  CAS  PubMed Central  Google Scholar 

  • Pandey GK (2008) Emergence of a novel calcium signaling pathway in plants: CBL-CIPK signaling network. Physiol Mol Biol Plants 14:51–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey GK, Sanyal SK (2021) Functional dissection of calcium homeostasis and transport machinery in plants, 1st edn. Springer International Publishing, Cham

    Book  Google Scholar 

  • Pandey GK, Cheong YH, Kim KN et al (2004) The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell 16:1912–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey N, Ranjan A, Pant P et al (2013) CAMTA 1 regulates drought responses in Arabidopsis thaliana. BMC Genomics 14:216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey GK, Pandey A, Prasad M, Böhmer M (2016) Abiotic stress signaling in plants: functional genomic intervention. Front Plant Sci 7:681

    Article  PubMed  PubMed Central  Google Scholar 

  • Park HC, Kim ML, Kang YH et al (2004) Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135:2150–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HC, Park CY, Koo SC et al (2010) AtCML8, a calmodulin-like protein, differentially activating CaM-dependent enzymes in Arabidopsis thaliana. Plant Cell Rep 29:1297–1304

    Article  CAS  PubMed  Google Scholar 

  • Qiu QS, Guo Y, Dietrich MA et al (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl AcadSci USA 99:8436–8441

    Article  CAS  Google Scholar 

  • Qu L, Sun M, Li X et al (2020) The Arabidopsis F-box protein FOF2 regulates ABA-mediated seed germination and drought tolerance. Plant Sci 301:110643

    Article  CAS  PubMed  Google Scholar 

  • Raina M, Kumar A, Yadav N et al (2021) StCaM2, a calcium binding protein, alleviates negative effects of salinity and drought stress in tobacco. Plant Mol Biol 106:85

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishna C, Singh S, Raghavendrarao S et al (2018) The membrane tethered transcription factor EcbZIP17 from finger millet promotes plant growth and enhances tolerance to abiotic stresses. Sci Rep 8:2148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ranty B, Aldon D, Cotelle V et al (2016) Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Front Plant Sci 7:327

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao SS, El-Habbak MH, Havens WM et al (2014) Overexpression of GmCaM4 in soybean enhances resistance to pathogens andtolerance to salt stress. Mol Plant Pathol 15:145–160

    Article  CAS  PubMed  Google Scholar 

  • Saeng-ngam S, Takpirom W, Buaboocha T et al (2012) The role of the OsCam1-1 salt stress sensor in ABA accumulation and salt tolerance in rice. J Plant Biol 55:198–208

    Article  CAS  Google Scholar 

  • Sanyal SK, Pandey A, Pandey GK (2015) The CBL-CIPK signaling module in plants: a mechanistic perspective. Physiol Plant 155:89–108

    Article  CAS  PubMed  Google Scholar 

  • Sanyal SK, Kanwar P, Samtani H et al (2017) Alternative splicing of CIPK3 results in distinct target selection to propagate ABA signaling in Arabidopsis. Front Plant Sci 8:1924

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanyal SK, Mahiwal S, Pandey GK (2019) Calcium signaling: a communication network that regulates cellular processes. In: Sopory S (ed) Sensory biology of plants. Springer, Singapore, pp 279–309

    Chapter  Google Scholar 

  • Sanyal SK, Mahiwal S, Nambiar DM, Pandey GK (2020) CBL-CIPK module-mediated phosphoregulation: facts and hypothesis. Biochem J 477:853–871

    Article  CAS  PubMed  Google Scholar 

  • Seo KI, Lee JH, Nezames CD et al (2014) ABD1 is an Arabidopsis DCAF substrate receptor for CUL4-DDB1-based E3 ligases that acts as a negative regulator of abscisic acid signaling. Plant Cell 26:695–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Q, Fu L, Su T et al (2020) Calmodulin HvCaM1 negatively regulates salt tolerance via modulation of HvHKT1s and HvCAMTA4. Plant Physiol 183:1650–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh UM, Metwal M, Singh M et al (2015) Identification and characterization of calcium transporter gene family in finger millet in relation to grain calcium content. Gene 566:37–46

    Article  CAS  PubMed  Google Scholar 

  • Sood S, Kumar A, Babu BK et al (2016) Gene discovery and advances in finger millet [Eleusine coracana (L.) Gaertn.] genomics an important nutri-cereal of future. Front Plant Sci 7:1–17

    Article  CAS  Google Scholar 

  • Srinivasachary DMM, Gale MD, Devos KM (2007) Comparative analyses reveal high levels of conserved colinearity between the finger millet and rice genomes. Theor Appl Genet 115:489–499

    Article  CAS  PubMed  Google Scholar 

  • Townley HE, Knight MR (2002) Calmodulin as a potential negative regulator of Arabidopsis COR gene expression. Plant Physiol 128:1169–1172

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Mahajan S (2007) Calcium signaling network in plants: an overview. Plant Signal Behav 2:79–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Vadassery J, Reichelt M, Hause B et al (2012) CML42-mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis. Plant Physiol 159:1159–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vadivoo AS, Joseph R, Ganesan NM (1998) Genetic variability and diversity for protein and calcium contents in finger millet (Eleusinecoracana (L) Gaertn) in relation to grain colour. Plant Foods Hum Nutr 52:353–364

    Article  CAS  PubMed  Google Scholar 

  • Virdi AS, Singh S, Singh P (2015) Abiotic stress responses in plants: Roles of calmodulin-regulated proteins. Front Plant Sci 6:600

    Article  Google Scholar 

  • Wang TZ, Zhang JL, Tian QY et al (2013) A Medicagotruncatula EF-Hand family gene, MtCaMP1, is involved in drought and salt stress tolerance. PLoS ONE 8:58952

    Article  CAS  Google Scholar 

  • Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:31–139. https://doi.org/10.1046/j.1365-3040.2002.00782.x

    Article  Google Scholar 

  • Xu J, Tian YS, Peng RH et al (2010) AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta 231:1251–1260

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Rocha PSCF, Wang M et al (2011) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234:47–59

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Aharon GS, Sottosanto JB, Blumwald E (2005) Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner. Proc Natl Acad Sci USA 102:16107–16112. https://doi.org/10.1073/pnas.0504437102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng H, Xu L, Singh A et al (2015) Involvement of calmodulin and calmodulin-like proteins in plant responses to abiotic stresses. Front Plant Sci 6:600

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang HY, Mao XG, Jing RL et al (2011) Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses. J Exp Bot 62:975–988

    Article  CAS  PubMed  Google Scholar 

  • Zielinski RE (1998) Calmodulin and calmodulin-binding proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 49:697–725

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Department of Plant Molecular Biology, University of Delhi South Campus and G. B. Pant Agriculture and Technology University for providing facilities to conduct this research work. This study was supported by Department of Biotechnology (Project code 7069) to AK. Research work in GKP’s lab is supported by Delhi University (IoE/FRP grant), Board of Research in Nuclear Sciences (BRNS), Department of Biotechnology (DBT), Science and Engineering Research Board (SERB), Council for Scientific and Industrial Research (CSIR), India. GJ, AA and SKS acknowledges DBT fellowship and NS is thankful to UGC, India for D. S. Kothari postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

GKP and AK conceived and planned the research. GJ, AA and NS conducted experiments. GJ, AA, NS, SKS, AK and GKP analyzed the data. GJ and GKP wrote and revised the manuscript.

Corresponding authors

Correspondence to Anil Kumar or Girdhar K. Pandey.

Ethics declarations

Conflict of interest

Authors declares no conflict of interest.

Additional information

Communicated by Aryadeep Roychoudhury.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamra, G., Agarwal, A., Singh, N. et al. Ectopic expression of finger millet calmodulin confers drought and salinity tolerance in Arabidopsis thaliana. Plant Cell Rep 40, 2205–2223 (2021). https://doi.org/10.1007/s00299-021-02743-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-021-02743-z

Keywords

Navigation