Skip to main content

Advertisement

Log in

Influence of virus–host interactions on plant response to abiotic stress

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Environmental factors play a significant role in controlling growth, development and defense responses of plants. Changes in the abiotic environment not only significantly alter the physiological and molecular pathways in plants, but also result in attracting the insect pests that carry a payload of viruses. Invasion of plants by viruses triggers the RNA silencing based defense mechanism in plants. In counter defense the viruses have gained the ability to suppress the host RNA silencing activities. A new paradigm has emerged, with the recognition that plant viruses also have the intrinsic capacity to modulate host plant response to environmental cues, in an attempt to favour their own survival. Thus, plant–virus interactions provide an excellent system to understand the signals in crosstalk between biotic (virus) and abiotic stresses. In this review, we have summarized the basal plant defense responses to pathogen invasion while emphasizing on the role of RNA silencing as a front line of defense response to virus infection. The emerging knowledge indicates overlap between RNA silencing with the innate immune responses during antiviral defense. The suppressors of RNA silencing serve as Avr proteins, which can be recognized by the host R proteins. The defense signals also function in concert with the phytohormones to influence plant responses to abiotic stresses. The current evidence on the role of virus induced host tolerance to abiotic stresses is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adenot X, Elmayan T, Lauressergues D, Boutet S, Bouché N, Gasciolli V, Vaucheret H (2006) DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr Biol 16(9):927–932

    Article  CAS  PubMed  Google Scholar 

  • Adie BA, Pérez-Pérez J, Pérez-Pérez MM, Godoy M, Sánchez-Serrano JJ, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19(5):1665–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aharoni N, Blumenfeld A, Richmond AE (1977) Hormonal activity in detached lettuce leaves as affected by leaf water content. Plant Physiol 59(6):1169–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alazem M, Lin NS (2015) Roles of plant hormones in the regulation of host–virus interactions. Mol Plant Pathol 16(5):529–540

    Article  CAS  PubMed  Google Scholar 

  • Albert I, Böhm H, Albert M, Feiler CE, Imkampe J, Wallmeroth N, Brancato C, Raaymakers TM, Oome S, Zhang H (2015) An RLP23–SOBIR1–BAK1 complex mediates NLP-triggered immunity. Nat Plants 1:15140

    Article  CAS  PubMed  Google Scholar 

  • Allen E, Howell M (2010) MiRNAs in the biogenesis of trans-acting siRNAs in higher plants. Semin Cell Develop Biol 21:798–804

    Article  CAS  Google Scholar 

  • An C, Wang C, Mou Z (2017) The Arabidopsis Elongator complex is required for non host resistance against the bacterial pathogens Xanthomonas citri subsPcitri and Pseudomonas syringae pV Phaseolicola NPS3121. New Phytol 214(3):1245–1259

    Article  CAS  PubMed  Google Scholar 

  • Anfoka G, Moshe A, Fridman L, Amrani L, Rotem O, Kolot M, Zeidan M, Czosnek H, Gorovits R (2016) Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures. Sci Rep 6:19715

    Article  PubMed  CAS  Google Scholar 

  • Azevedo J, Garcia D, Pontier D, Ohnesorge S, Yu A, Garcia S, Braun L, Bergdoll M, Hakimi MA, Lagrange T, Voinnet O (2010) Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev 24(9):904–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baebler Š, Witek K, Petek M, Stare K, Tušek-Žnidarič M, Pompe-Novak M, Renaut J, Szajko K, Strzelczyk-Żyta D, Marczewski W, Morgiewicz K, Gruden K, Hennig J (2014) Salicylic acid is an indispensable component of the Ny-1 resistance-gene-mediated response against Potato virus Y infection in potato. J Exp Bot 65(4):1095–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baulcombe DC (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  • Bergès SE, Vile D, Vazquez-Rovere C, Blanc S, Yvon M, Bédiée A, Rolland G, Dauzat M, van Munster M (2018) Interactions between drought and plant genotype change epidemiological traits of Cauliflower mosaic virus. Front Plant Sci 9:703

    Article  PubMed  PubMed Central  Google Scholar 

  • Berrocal-Lobo M, Molina A, Solano R (2002) Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J 29(1):23–32

    Article  CAS  PubMed  Google Scholar 

  • Bivalkar-Mehla S, Vakharia J, Mehla R, Abreha M, Kanwar JR, Tikoo A, Chauhan A (2011) Viral RNA silencing suppressors (RSS): novel strategy of viruses to ablate the host RNA interference (RNAi) defense system. Virus Res 155(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Boccara M, Sarazin A, Thiébeauld O, Jay F, Voinnet O, Navarro L, Colot V (2015) The Arabidopsis miR472-RDR6 silencing pathway modulates PAMP- and effector-triggered immunity through the post-transcriptional control of disease resistance genes. PLoS Pathog 11(4):e1004814

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123(7):1279–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bortolamiol D, Pazhouhandeh M, Marrocco K, Genschik P, Ziegler-Graff V (2007) The Polerovirus F box protein P0 targets ARGONAUTE1 to suppress RNA silencing. Curr Biol 17(18):1615–1621

    Article  CAS  PubMed  Google Scholar 

  • Brant EJ, Budak H (2018) Plant small non-coding RNAs and their roles in biotic stresses. Front Plant Sci 9:1038

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown GD, Taylor PR, Reid DM, Willment JA, Williams DL, Martinez-Pomares L, Wong SY, Gordon S (2002) Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med 196(3):407–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brustolini OJB, Machado JPB, Condori-Apfata JA, Coco D, Deguchi M, Loriato VAP, Pereira WA, Alfenas-Zerbini P, Zerbini FM, Inoue-Nagata AK, Santos AA, Chory J, Silva FF, Fontes EPB (2015) Sustained NIK-mediated antiviral signalling confers broad-spectrum tolerance to begomoviruses in cultivated plants. Plant Biotechnol J 13(9):1300–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G (2010) A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci USA 107(20):9452–9457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchmann RC, Asad S, Wolf JN, Mohannath G, Bisaro DM (2009) Geminivirus AL2 and L2 proteins suppress transcriptional gene silencing and cause genome-wide reductions in cytosine methylation. J Virol 83(10):5005–5013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgyán J, Havelda Z (2011) Viral suppressors of RNA silencing. Trends Plant Sci 16(5):265–272

    Article  PubMed  CAS  Google Scholar 

  • Calderón Villalobos LI, Lee S, De Oliveira C, Ivetac A, Brandt W, Armitage L, Sheard LB, Tan X, Parry G, Mao H, Zheng N, Napier R, Kepinski S, Estelle M (2012) A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol 8(5):477–485

    Article  PubMed  CAS  Google Scholar 

  • Calil IP, Fontes EPB (2017) Plant immunity against viruses: antiviral immune receptors in focus. Ann Bot 119(5):711–723

    CAS  PubMed  Google Scholar 

  • Caplan JL, Mamillapalli P, Burch-Smith TM, Czymmek K, Dinesh-Kumar SP (2008) Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132(3):449–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr JP, Lewsey MG, Palukaitis P (2010) Signaling in induced resistance. Adv Virus Res 76:57–121

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay C, Birah A, Jalali BL (2019) Climate change: impact on biotic stresses afflicting crop plants. In: Peshin R, Dhawan A (eds) Natural resource management: ecological perspectives. Sustainability in plant and crop protection. Springer, Charm, pp 133–146

    Google Scholar 

  • Checker VG, Kushwaha HR, Kumari P, Yadav S (2018) Role of phytohormones in plant defense: signaling and cross talk. In: Singh A, Singh I (eds) Molecular aspects of plant–pathogen interaction. Springer, Singapore, pp 159–184

  • Chellappan P, Xia J, Zhou X, Gao S, Zhang X, Coutino G, Vazquez F, Zhang W, Jin H (2010) siRNAs from miRNA sites mediate DNA methylation of target genes. Nucl Acids Res 38(20):6883–6894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JD, Felix G, Boller T (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500

    Article  CAS  PubMed  Google Scholar 

  • Choi SE, Kemper JK (2013) Regulation of SIRT1 by MicroRNAs. Mol Cell 36:385–392

    Article  CAS  Google Scholar 

  • Choi J, Huh SU, Kojima M, Sakakibara H, Paek KH, Hwang I (2010) The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev Cell 19:284–295

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury FT, Shohan MUS, Islam T, Mimu TT, Palit P (2019) A therapeutic approach against leishmania donovani by predicting RNAi molecules against the surface protein, gp63. Cur Bioinforma 14:541–550

    Article  CAS  Google Scholar 

  • Chung E, Kim KM, Lee JH (2013) Genome-wide analysis and molecular characterization of heat shock transcription factor family in Glycine max. J Genet Genomics 40(3):127–135

    Article  CAS  PubMed  Google Scholar 

  • Clarke SF, McKenzie MJ, Burritt DJ, Guy PL, Jameson PE (1999) Influence of white clover mosaic potexvirus infection on the endogenous cytokinin content of bean. Plant Physiol 120:547–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Hückelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977

    Article  CAS  PubMed  Google Scholar 

  • Collum TD, Padmanabhan MS, Hsieh YC, Culver JN (2016) Tobacco mosaic virus-directed reprogramming of auxin/indole acetic acid protein transcriptional responses enhances virus phloem loading. Proc Natl Acad Sci USA 113(19):E2740-2749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooley MB, Pathirana S, Wu HJ, Kachroo P, Klessig DF (2000) Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12(5):663–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corrales-Gutierrez M, Medina-Puche L, Yu Y, Wang L, Ding X, Luna AP, Bejarano ER, Castillo AG, Lozano-Duran R (2020) The C4 protein from the geminivirus Tomato yellow leaf curl virus confers drought tolerance in Arabidopsis through an ABA-independent mechanism. Plant Biotechnol J 18(5):1121–1123

    Article  CAS  PubMed  Google Scholar 

  • Csorba T, Kontra L, Burgyán J (2015) Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479–480:85–103

    Article  PubMed  CAS  Google Scholar 

  • Daudi A, O’Brien JA (2012) Detection of hydrogen peroxide by dab staining in arabidopsis Leaves. Bio Protoc 2(18):e263

    Article  PubMed  Google Scholar 

  • Davis TS, Bosque-Perez NA, Foote NE, Magney T, Sanford DE (2015) Environmentally dependent host–pathogen and vector–pathogen interactions in the Barley yellow dwarf virus pathosystem. J Appl Ecol 52:1392–1401

    Article  Google Scholar 

  • Dawson WO, Hilf ME (1992) Host-Range determinants of plant viruses. Annu Rev Plant Physiol Plant Mol Biol 43:527–555

    Article  CAS  Google Scholar 

  • de Laat AMM, van Loon LC (1983) The relationship between stimulated ethylene production and symptom expression in virus-infected tobacco leaves. Physiol Plant Pathol 22(2):261–273

    Article  Google Scholar 

  • de Ronde D, Butterbach P, Kormelink R (2014a) Dominant resistance against plant viruses. Front Plant Sci 5:307

    Article  PubMed  PubMed Central  Google Scholar 

  • de Ronde D, Pasquier A, Ying S, Butterbach P, Lohuis D, Kormelink R (2014b) Analysis of Tomato spotted wilt virus NSs protein indicates the importance of the N-terminal domain for avirulence and RNA silencing suppression. Mol Plant Pathol 15(2):185–195

    Article  PubMed  CAS  Google Scholar 

  • Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O (2006) Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313(5783):68–71

    Article  CAS  PubMed  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 11(8):539–548

    Article  CAS  PubMed  Google Scholar 

  • Douchkov D, Lueck S, Hensel G, Kumlehn J, Rajaraman J, Johrde A, Doblin MS, Beahan CT, Kopischke M, Fuchs R, Lipka V, Niks RE, Bulone V, Chowdhury J, Little A, Burton RA, Bacic A, Fincher GB, Schweizer P (2016) The barley (Hordeum vulgare) cellulose synthase-like D2 gene (HvCslD2) mediates penetration resistance to host-adapted and nonhost isolates of the powdery mildew fungus. New Phytol 212(2):421–433

    Article  CAS  PubMed  Google Scholar 

  • Du Z, Chen A, Chen W, Liao Q, Zhang H, Bao Y, Roossinck MJ, Carr JP (2014) Nuclear-cytoplasmic partitioning of cucumber mosaic virus protein 2b determines the balance between its roles as a virulence determinant and an RNA-silencing suppressor. J Virol 88(10):5228–5241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duan CG, Fang YY, Zhou BJ, Zhao JH, Hou WN, Zhu H, Ding SW, Guo HS (2012) Suppression of Arabidopsis ARGONAUTE1-mediated slicing, transgene-induced RNA silencing, and DNA methylation by distinct domains of the Cucumber mosaic virus 2b protein. Plant Cell 24(1):259–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellinger D, Voigt CA (2014) Callose biosynthesis in Arabidopsis with a focus on pathogen response: what we have learned within the last decade. Ann Bot 114(6):1349–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Encabo JR, Macalalad-Cabral RJA, Matres JMK, Coronejo SCTP, Jonson GB, Kishima Y, Henry A, Choi IR (2020) Infection with an asymptomatic virus in rice results in a delayed drought response. Funct Plant Biol 47(3):239–249

    Article  CAS  PubMed  Google Scholar 

  • Endres MW, Gregory BD, Gao Z, Foreman AW, Mlotshwa S, Ge X, Pruss GJ, Ecker JR, Bowman LH, Vance V (2010) Two plant viral suppressors of silencing require the ethylene-inducible host transcription factor RAV2 to block RNA silencing. PLoS Pathog 6(1):e1000729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan J, Crooks C, Creissen G, Hill L, Fairhurst S, Doerner P, Lamb C (2011) Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis. Science 331(6021):1185–1188

    Article  CAS  PubMed  Google Scholar 

  • Fátyol K, Fekete KA, Ludman M (2020) Double-stranded-RNA-binding protein 2 participates in antiviral defense. J Virol 94(11):e00017-20

    Article  PubMed  PubMed Central  Google Scholar 

  • Fei Q, Xia R, Meyers BC (2013) Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25(7):2400–2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman BC, Beattie GA (2008) An overview of plant defenses against pathogens and herbivores. The Plant Health Instructor. https://doi.org/10.1094/PHI-I-2008-0226-01

    Article  Google Scholar 

  • Frescatada-Rosa M, Robatzek S, Hannah K (2015) Should I stay or should I go? Traffic control for plant pattern recognition receptors. Curr Opin Plant Biol 28:23–29

    Article  CAS  PubMed  Google Scholar 

  • Frye CA, Tang D, Innes RW (2001) Negative regulation of defense responses in plants by a conserved MAPKK Kinase. Proc Natl Acad Sci USA 98:373–378

    Article  CAS  PubMed  Google Scholar 

  • Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863

    Article  CAS  PubMed  Google Scholar 

  • Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486(7402):228–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallet R, Fabre F, Thébaud G, Sofonea MT, Sicard A, Blanc S, Michalakis Y (2018) Small bottleneck size in a highly multipartite virus during a complete infection cycle. J Virol 92(14):e00139-e218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garapati P, Xue GP, Munné-Bosch S, Balazadeh S (2015) Transcription factor ATAF1 in arabidopsis promotes senescence by direct regulation of key chloroplast maintenance and senescence transcriptional cascades. Plant Physiol 168(3):1122–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Ruiz H, Takeda A, Chapman EJ, Sullivan CM, Fahlgren N, Brempelis KJ, Carrington JC (2010) Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip Mosaic Virus infection. Plant Cell 22(2):481–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giner A, Lakatos L, García-Chapa M, López-Moya JJ, Burgyán J (2010) Viral protein inhibits RISC activity by argonaute binding through conserved WG/GW motifs. PLoS Pathog 6(7):e1000996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gish LA, Clark SE (2011) The RLK/Pelle family of kinases. Plant J 66(1):117–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick E, Zrachya A, Levy Y, Mett A, Gidoni D, Belausov E, Citovsky V, Gafni Y (2008) Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. Proc Natl Acad Sci USA 105(1):157–161

    Article  CAS  PubMed  Google Scholar 

  • Goff KE, Ramonell KM (2007) The role and regulation of receptor-like kinases in plant defense. Gene Regul Syst Bio 1:167–175

    PubMed  PubMed Central  Google Scholar 

  • Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5(6):1003–1011

    Article  PubMed  Google Scholar 

  • Gómez-Gómez L, Bauer Z, Boller T (2001) Both the extracellular leucine-rich repeat domain and the kinase activity of FLS2 are required for flagellin binding and signaling in Arabidopsis. Plant Cell 13(5):1155–1163

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorovits R, Sobol I, Altaleb M, Czosnek H, Anfoka G (2019) Taking advantage of a pathogen: understanding how a virus alleviates plant stress response. Phytopathol Res 1:1–6

    Article  Google Scholar 

  • Gouveia BC, Calil IP, Machado JP, Santos AA, Fontes EP (2017) Immune receptors and co-receptors in antiviral innate immunity in plants. Front Microbiol 7:2139

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham J, Hackett CA, Smith K, Woodhead M, MacKenzie K, Tierney I, Cooke D, Bayer M, Jennings N (2011) Towards an understanding of the nature of resistance to Phytophthora root rot in red raspberry. Theor Appl Genet 123(4):585–601

    Article  CAS  PubMed  Google Scholar 

  • Grimmer MK, John Foulkes M, Paveley ND (2012) Foliar pathogenesis and plant water relations: a review. J Exp Bot 63:4321–4331

    Article  CAS  PubMed  Google Scholar 

  • Guleria P, Mahajan M, Bhardwaj J, Yadav SK (2011) Plant small RNAs: biogenesis, mode of action and their roles in abiotic stresses. Genomics Proteomics Bioinformatics 9(6):183–199

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Li Y, Ding S-W (2019) Small RNA-based antimicrobial immunity. Nat Rev Immunol 19:31–44

    Article  CAS  PubMed  Google Scholar 

  • Gupta OP, Permar V, Koundal V, Singh UD, Parveen S (2012) MicroRNA regulated defense responses in Triticum aestivum L. during Puccinia gramminis f.sp. tritici infection. Mol Biol Rep 39:817–824

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Horie K, Hiwatashi Y, Kawaide H, Yamaguchi S, Hanada A, Nakashima T, Nakajima M, Mander LN, Yamane H, Hasebe M, Nozaki H (2010) Endogenous diterpenes derived from ent-kaurene, a common gibberellin precursor, regulate protonema differentiation of the moss Physcomitrella patens. Plant Physiol 153(3):1085–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Chen X, Yang J, Zhang T, Li J, Zhang S, Zhong K, Zhang H, Chen J, Yang J (2020) Rice black-streaked dwarf virus-encoded P5–1 regulates the ubiquitination activity of SCF E3 ligases and inhibits jasmonate signaling to benefit its infection in rice. New Phytol 225(2):896–912

    Article  CAS  PubMed  Google Scholar 

  • Hendelman A, Kravchik M, Stav R, Zik M, Lugassi N, Arazi T (2013) The developmental outcomes of P0-mediated ARGONAUTE destabilization in tomato. Planta 237(1):363–377

    Article  CAS  PubMed  Google Scholar 

  • Henderson IR, Zhang X, Lu C, Johnson L, Meyers BC, Green PJ, Jacobsen SE (2006) Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet 38(6):721–725

    Article  CAS  PubMed  Google Scholar 

  • Hernández Y, Sanan-Mishra N (2017) miRNA mediated regulation of NAC transcription factors in plant development and environment stress response. Plant Gene 11:190–198

    Article  CAS  Google Scholar 

  • Hiruma K, Takano Y (2011) Roles of EDR1 in non-host resistance of Arabidopsis. Plant Signal Behav 6(11):1831–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou S, Wang X, Chen D, Yang X, Wang M, Turrà D, Di Pietro A, Zhang W (2014) The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7. PLoS Pathog 10(9):e1004331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hou X, Rivers J, León P, McQuinn RP, Pogson BJ (2016) Synthesis and function of apocarotenoid signals in plants. Trends Plant Sci 21:792–803

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Zhang X, Gong Z, Yang S, Shi Y (2017) ABI4 represses the expression of type-A ARRs to inhibit seed germination in Arabidopsis. Plant J 89:354–365

    Article  CAS  PubMed  Google Scholar 

  • Hull R (2009) Comparative Plant Virology. Elsevier, Amsterdam

    Google Scholar 

  • Hwang SM, Kim DW, Woo MS, Jeong HS, Son YS, Akhter S, Choi GJ, Bahk JD (2014) Functional characterization of Arabidopsis HsfA6a as a heat-shock transcription factor under high salinity and dehydration conditions. Plant Cell Environ 37:1202–1222

    Article  CAS  PubMed  Google Scholar 

  • Ioio RD, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322(5906):1380–1384

    Article  CAS  Google Scholar 

  • Ishiga Y, Uppalapati SR, Gill US, Huhman D, Tang Y, Mysore KS (2015) Transcriptomic and metabolomic analyses identify a role for chlorophyll catabolism and phytoalexin during Medicago nonhost resistance against Asian soybean rust. Sci Rep 5:13061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam W (2017) Management of plant virus diseases: farmer’s knowledge and our suggestions. Hosts Viruses 4:5–20

    Google Scholar 

  • Jabs T, Tschöpe M, Colling C, Hahlbrock K, Scheel D (1997) Elicitor-stimulated ion fluxes and O2− from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc Natl Acad Sci USA 94(9):4800–4805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamous RM, Boonrod K, Fuellgrabe MW, Ali-Shtayeh MS, Krczal G, Wassenegger M (2011) The helper component-proteinase of the Zucchini yellow mosaic virus inhibits the Hua Enhancer 1 methyltransferase activity in vitro. J Gen Virol 92(Pt 9):2222–2226

    Article  CAS  PubMed  Google Scholar 

  • Jay F, Wang Y, Yu A, Taconnat L, Pelletier S, Colot V, Renou JP, Voinnet O (2011) Misregulation of Auxin Response Factor 8 underlies the developmental abnormalities caused by three distinct viral silencing suppressors in Arabidopsis. PLoS Pathog 7(5):e1002035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang CJ, Shimono M, Sugano S, Kojima M, Yazawa K, Yoshida R, Inoue H, Hayashi N, Sakakibara H, Takatsuji H (2010) Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction. Mol Plant Microbe Interact 23(6):791–798

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Qin Q, Wang Y, Pu Y, Liu L, Wen X, Ji S, Wu J, Wei C, Ding B, Li Y (2016) Rice dwarf virus P2 protein hijacks auxin signaling by directly targeting the rice OsIAA10 protein, enhancing viral infection and disease development. PLoS Pathog 12(9):e1005847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson C, Kasprzewska A, Tennessen K, Fernandes J, Nan GL, Walbot V, Sundaresan V, Vance V, Bowman LH (2009) Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res 19(8):1429–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329

    Article  CAS  PubMed  Google Scholar 

  • Jones RW, Jackson AO (1990) Replication of sonchus yellow net virus in infected protoplasts. Virol 179(2):815–820

    Article  CAS  Google Scholar 

  • Jun Z, Zhang Z, Gao Y, Zhou L, Fang L, Chen X, Ning Z, Chen T, Guo W, Zhang T (2015) Overexpression of GbRLK, a putative receptor-like kinase gene, improved cotton tolerance to Verticillium wilt. Sci Rep 5:15048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA 103:11086–11091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang L, Li J, Zhao T, Xiao F, Tang X, Thilmony R, He S, Zhou JM (2003) Interplay of the Arabidopsis nonhost resistance gene NHO1 with bacterial virulence. Proc Natl Acad Sci USA 100:3519–3524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karjee S, Sanan-Mishra N, Mukherjee SK (2010) Viral Suppressors of RNA Silencing in Plants. Pest Technol 4(1):1–13

    Google Scholar 

  • Karran RA, Sanfaçon H (2014) Tomato ringspot virus coat protein binds to ARGONAUTE 1 and suppresses the translation repression of a reporter gene. Mol Plant Microbe Interact 27(9):933–943

    Article  CAS  PubMed  Google Scholar 

  • Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell 4(2):205–217

    Article  CAS  PubMed  Google Scholar 

  • Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A Jr, Zhu JK, Staskawicz BJ, Jin H (2006) A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci USA 103(47):18002–18007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazan K (2015) Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20(4):219–229

    Article  CAS  PubMed  Google Scholar 

  • Keller P, Lüttge U, Wang X-C, Büttner G (1989) Influence of rhizomania disease on gas exchange and water relations of a susceptible and a tolerant sugar beet variety. Physiol Mol Plant Pathol 34:379–392

    Article  Google Scholar 

  • Kissoudis C, Sunarti S, van de Wiel C, Visser RG, van der Linden CG, Bai Y (2016) Responses to combined abiotic and biotic stress in tomato are governed by stress intensity and resistance mechanism. J Exp Bot 67(17):5119–5132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopp E, Medzhitov R (2003) Recognition of microbial infection by Toll-like receptors. Curr Opin Immunol 15(4):396–401

    Article  CAS  PubMed  Google Scholar 

  • Kørner CJ, Klauser D, Niehl A, Domínguez-Ferreras A, Chinchilla D, Boller T, Heinlein M, Hann DR (2013) The immunity regulator BAK1 contributes to resistance against diverse RNA viruses. Mol Plant Microbe Interact 26(11):1271–1280

    Article  PubMed  CAS  Google Scholar 

  • Križnik M, Petek M, Dobnik D, Ramšak Ž, Baebler Š, Pollmann S, Kreuze JF, Žel J, Gruden K (2017) Salicylic acid perturbs sRNA-gibberellin regulatory network in immune response of potato to potato virus y infection. Front Plant Sci 8:2192

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Anand A, Mukherjee SK, Sanan-Mishra N (2014) Engineering viral suppressors of RNA silencing: requirement and applications. In: Reddy DVR, Ananda P (eds) Genetically Engineered Crops in Developing Countries. P Lava Kumar, G Lobenstein, C Kameswara Rao, Studium Press, LLC, Houston, USA, Kumar, pp 309–332

    Google Scholar 

  • Kumar S, Tanti B, Patil BL, Mukherjee SK, Sahoo L (2017) RNAi-derived transgenic resistance to Mungbean yellow mosaic India virus in cowpea. PLoS ONE 12(10):e0186786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar S, Purkyastha S, Roy C, Ranjan T, Ranjan RD (2020) Genes for different abiotic stresses tolerance in wheat. In: Hossain A (ed) Plant Stress Physiol. Intech Open

  • Lakatos L, Csorba T, Pantaleo V, Chapman EJ, Carrington JC, Liu YP, Dolja VV, Calvino LF, López-Moya JJ, Burgyán J (2006) Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J 25(12):2768–2780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landeo-Ríos Y, Navas-Castillo J, Moriones E, Cañizares MC (2016) The p22 RNA silencing suppressor of the Crinivirus Tomato chlorosis virus is dispensable for local viral replication but important for counteracting an antiviral RDR6-mediated response during systemic infection. Viruses 8(7):182

    Article  PubMed Central  CAS  Google Scholar 

  • Langenbach C, Campe R, Schaffrath U, Goellner K, Conrath U (2013) UDP-glucosyltransferase UGT84A2/BRT1 is required for Arabidopsis nonhost resistance to the Asian soybean rust pathogen Phakopsora pachyrhizi. New Phytol 198(2):536–545

    Article  CAS  PubMed  Google Scholar 

  • Lee HA, Yeom SI (2015) Plant NB-LRR proteins: tightly regulated sensors in a complex manner. Briefings Functional Genomics 14(4):233–242

    Article  CAS  Google Scholar 

  • Lee HA, Lee HY, Seo E, Lee J, Kim SB, Oh S, Choi E, Choi E, Lee SE, Choi D (2017) Current understandings of plant nonhost resistance. Mol Plant Microbe Interact 30(1):5–15

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhang B (2016) MicroRNAs in control of plant development. J Cell Physiol 231(2):303–313

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang Q, Zhang J, Wu L, Qi Y, Zhou JM (2010) Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 152(4):2222–2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Zhang L, Wang A, Xu X, Li J (2013b) Ectopic overexpression of SlHsfA3, a heat stress transcription factor from tomato, confers increased thermotolerance and salt hypersensitivity in germination in transgenic Arabidopsis. PLoS ONE 8(1):e54880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Wang L, Sheng X, Yan C, Zhou R, Hang J, Yin P, Yan N (2013a) Molecular basis for the selective and ABA-independent inhibition of PP2CA by PYL13. Cell Res 23:1369–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Lu YG, Shi Y, Wu L, Xu YJ, Huang F, Guo XY, Zhang Y, Fan J, Zhao JQ, Zhang HY, Xu PZ, Zhou JM, Wu XJ, Wang PR, Wang WM (2014) Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiol 164(2):1077–1092

    Article  CAS  PubMed  Google Scholar 

  • Li N, Han X, Feng D, Yuan D, Huang LJ (2019) Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: do we understand what they are whispering? Int J Mol Sci 20(3):671

    Article  PubMed Central  CAS  Google Scholar 

  • Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F, Molina A, Parker J, Somerville S, Schulze-Lefert P (2005) Pre- and post invasion defenses both contribute to non host resistance in Arabidopsis. Science 310(5751):1180–1183

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Chen X (2016) RNA quality control as a key to suppressing RNA silencing of endogenous genes in plants. Mol Plant 9(6):826–836

    Article  CAS  PubMed  Google Scholar 

  • Lovato A, Pignatti A, Vitulo N, Vandelle E, Polverari A (2019) Inhibition of virulence-related traits in Pseudomonas syringae pv. actinidiae by gunpowder green tea extracts. Frontiers Microbiol 10:2362

    Article  Google Scholar 

  • Love AJ, Geri C, Laird J, Carr C, Yun BW, Loake GJ, Tada Y, Sadanandom A, Milner JJ (2012) Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity. PLoS ONE 7(10):e47535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu M, Tang X, Zhou JM (2001) Arabidopsis NHO1 is required for general resistance against Pseudomonas bacteria. Plant Cell 13:437–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J, Wang XC (2007) A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol 63(2):289–305

    Article  CAS  PubMed  Google Scholar 

  • Luna E, Bruce TJ, Roberts MR, Flors V, Ton J (2012) Next-generation systemic acquired resistance. Plant Physiol 158(2):844–853

    Article  CAS  PubMed  Google Scholar 

  • Ma KW, Ma W (2016) Phytohormone pathways as targets of pathogens to facilitate infection. Plant Mol Biol 91(6):713–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macho AP, Zipfel C (2014) Plant PRRs and the activation of innate immune signaling. Mol Cell 54(2):263–272

    Article  CAS  PubMed  Google Scholar 

  • Maiti S, Basak J, Kundagrami S, Kundu A, Pal A (2011) Molecular marker-assisted genotyping of mungbean yellow mosaic India virus resistant germplasms of mungbean and urdbean. Mol Biotechnol 47(2):95–104

    Article  CAS  PubMed  Google Scholar 

  • Mäkinen K, Lõhmus A, Pollari M (2017) Plant RNA regulatory network and RNA granules in virus infection. Frontiers Plant Sci 8:2093

    Article  Google Scholar 

  • Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315(5811):513–515

    Article  PubMed  CAS  Google Scholar 

  • Matthews REF, Hull R (2002) Matthews’ plant virology. Gulf professional publishing

    Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant–pathogen interactions. Curr Opin Plant Biol 8(4):409–414

    Article  CAS  PubMed  Google Scholar 

  • Mengiste T, Chen X, Salmeron J, Dietrich R (2003) The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15(11):2551–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mérai Z, Kerényi Z, Kertész S, Magna M, Lakatos L, Silhavy D (2006) Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. J Virol 80(12):5747–5756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    Article  CAS  PubMed  Google Scholar 

  • Mills-Lujan K, Deom CM (2010) Geminivirus C4 protein alters Arabidopsis development. Protoplasma 239(1–4):95–110

    Article  CAS  PubMed  Google Scholar 

  • Molnár A, Csorba T, Lakatos L, Várallyay É, Lacomme C, Burgyán J (2005) Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J Virol 79:7812–7818

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moon JY, Park JM (2016) Cross-talk in viral defense signaling in plants. Frontiers Microbiol 7:2068

    Article  Google Scholar 

  • Moreau M, Degrave A, Vedel R, Bitton F, Patrit O, Renou JP, Barny MA, Fagard M (2012) EDS1 contributes to nonhost resistance of Arabidopsis thaliana against Erwinia amylovora. Mol Plant-Microbe Interact 25:421–430

    Article  CAS  PubMed  Google Scholar 

  • Moreira X, Zas R, Sampedro L (2012) Differential allocation of constitutive and induced chemical defenses in pine tree juveniles: a test of the optimal defense theory. PLoS ONE 7(3):e34006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mott GA, Thakur S, Smakowska E, Wang PW, Belkhadir Y, Desveaux D, Guttman DS (2016) Genomic screens identify a new phytobacterial microbe-associated molecular pattern and the cognate Arabidopsis receptor-like kinase that mediates its immune elicitation. Genome Biol 17:98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moubayidin L, Perilli S, Ioio RD, Di Mambro R, Costantino P, Sabatini S (2010) The rate of cell differentiation controls the Arabidopsis root meristem growth phase. Curr Biol 20(12):1138–1143

    Article  CAS  PubMed  Google Scholar 

  • Mur LA, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140(1):249–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthamilarasan M, Prasad M (2013) Plant innate immunity: an updated insight into defense mechanism. J Biosci 38(2):433–449

    Article  CAS  PubMed  Google Scholar 

  • Nakahara KS, Masuta C, Yamada S, Shimura H, Kashihara Y, Wada TS, Meguro A, Goto K, Tadamura K, Sueda K, Sekiguchi T, Shao J, Itchoda N, Matsumura T, Igarashi M, Ito K, Carthew RW, Uyeda I (2012) Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors. Proc Natl Acad Sci USA 109(25):10113–10118

  • Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51(4):617–630

    Article  CAS  PubMed  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312(5772):436–439

    Article  CAS  PubMed  Google Scholar 

  • Navarro L, Bari R, Achard P, Lisón P, Nemri A, Harberd NP, Jones JD (2008) DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol 18(9):650–655

    Article  CAS  PubMed  Google Scholar 

  • Nicaise V, Candresse T (2017) Plum pox virus capsid protein suppresses plant pathogen-associated molecular pattern (PAMP)-triggered immunity. Mol Plant Pathol 18(6):878–886

    Article  CAS  PubMed  Google Scholar 

  • Niehl A, Wyrsch I, Boller T, Heinlein M (2016) Double-stranded RNAs induce a pattern-triggered immune signaling pathway in plants. New Phytol 211(3):1008–1019

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Gomez L, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J Exp Bot 53(372):1283–1304

    Article  CAS  PubMed  Google Scholar 

  • Nomura H, Komori T, Kobori M, Nakahira Y, Shiina T (2008) Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. Plant J 53(6):988–998

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi T, Sugahara S, Yamada T, Kikuchi K, Yoshiba Y, Hirano HY, Tsutsumi N (2005) OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genet Syst 80(2):135–139

    Article  CAS  PubMed  Google Scholar 

  • Ohtsubo N, Mitsuhara I, Koga M, Seo S, Ohashi Y (1999) Ethylene promotes the necrotic lesion formation and basic PR gene expression in TMV-infected tobacco. Plant Cell Physiol 40(8):808–817

    Article  CAS  Google Scholar 

  • Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2013) Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J Exp Bot 64:445–458

    Article  CAS  PubMed  Google Scholar 

  • Pacifici E, Polverari L, Sabatini S (2015) Plant hormone cross-talk: the pivot of root growth. J Expt Bot 66(4):1113–1121

    Article  CAS  Google Scholar 

  • Paludan SR, Pradeu T, Masters SL, Mogensen TH (2021) Constitutive immune mechanisms: mediators of host defence and immune regulation. Nat Rev Immunol 21:137–150

    Article  CAS  PubMed  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150(4):1648–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paudel DB, Sanfaçon H (2018) Exploring the diversity of mechanisms associated with plant tolerance to virus infection. Front Plant Sci 9:1575

    Article  PubMed  PubMed Central  Google Scholar 

  • Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Pérez AC, Chico JM, Bossche RV, Sewell J, Gil E, García-Casado G, Witters E, Inzé D, Long JA, De Jaeger G, Solano R, Goossens A (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464(7289):788–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162(4):1849–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pruitt RN, Schwessinger B, Joe A, Thomas N, Liu F, Albert M, Robinson MR, Chan LJ, Luu DD, Chen H, Bahar O, Daudi A, De Vleesschauwer D, Caddell D, Zhang W, Zhao X, Li X, Heazlewood JL, Ruan D, Majumder D, Chern M, Kalbacher H, Midha S, Patil PB, Sonti RV, Petzold CJ, Liu CC, Brodbelt JS, Felix G, Ronald PC (2015) The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Sci Adv 1(6):e1500245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pruss GJ, Ge X, Shi XM, Carrington JC, Bowman Vance V (1997) Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. Plant Cell 9(6):859–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pruss GJ, Lawrence CB, Bass T, Li QQ, Bowman LH, Vance V (2004) The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens. Virol 320(1):107–120

    Article  CAS  Google Scholar 

  • Qiao Y, Liu L, Xiong Q, Flores C, Wong J, Shi J, Wang X, Liu X, Xiang Q, Jiang S, Zhang F, Wang Y, Judelson HS, Chen X, Ma, (2013) Oomycete pathogens encode RNA silencing suppressors. Nature Genet 45:330–333

    Article  CAS  PubMed  Google Scholar 

  • Qin Q, Li G, Jin L, Huang Y, Wang Y, Wei C, Xu Z, Yang Z, Wang H, Li Y (2020) Auxin response factors (ARFs) differentially regulate rice antiviral immune response against rice dwarf virus. PLoS Pathog 16(12):e1009118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramesh SV, Williams S, Kappagantu M, Mitter N, Pappu HR (2017) Transcriptome-wide identification of host genes targeted by tomato spotted wilt virus-derived small interfering RNAs. Virus Res 238:13–23

    Article  CAS  PubMed  Google Scholar 

  • Ranf S (2018) Pattern recognition receptors—Versatile genetic tools for engineering broad-spectrum disease resistance in crops. Agronomy 8(8):134

    Article  CAS  Google Scholar 

  • Ranf S, Gisch N, Schäffer M, Illig T, Westphal L, Knirel YA, Sánchez-Carballo PM, Zähringer U, Hückelhoven R, Lee J (2015) A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nat Immunol 16:426–433

    Article  CAS  PubMed  Google Scholar 

  • Rawlings RA, Krishnan V, Walter NG (2011) Viral RNAi suppressor reversibly binds siRNA to outcompete Dicer and RISC via multiple turnover. J Mol Biol 408(2):262–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robatzek S, Chinchilla D, Boller T (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20(5):537–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert-Seilaniantz A, Navarro L, Bari R, Jones JD (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10:372–379

    Article  CAS  PubMed  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez MC, Conti G, Zavallo D, Manacorda CA, Asurmendi S (2014) TMV-Cg Coat Protein stabilizes DELLA proteins and in turn negatively modulates salicylic acid-mediated defense pathway during Arabidopsis thaliana viral infection. BMC Plant Biol 14(1):1–17

    Article  CAS  Google Scholar 

  • Ron M, Avni A (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16(6):1604–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    Article  CAS  PubMed  Google Scholar 

  • Sanan-Mishra N, Chakraborty S, Gupta D, Mukherjee SK (2017) RNAi suppressors: biology and mechanisms. In: Rajewsky N, Jurga S, Barciszewski J (eds) Plant epigenetics RNA technologies. Springer, Charm

    Google Scholar 

  • Sanan-Mishra N, Jailani AAK, Mandal B, Mukherjee SK (2021) Secondary siRNAs in plants: biosynthesis, various functions and applications in virology. Front Plant Sci 12:610283

    Article  PubMed  PubMed Central  Google Scholar 

  • Satoh K, Shimizu T, Kondoh H, Hiraguri A, Sasaya T, Choi IR, Omura T, Kikuchi S (2011) Relationship between symptoms and gene expression induced by the infection of three strains of Rice dwarf virus. PLoS ONE 6(3):e18094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saur IM, Kadota Y, Sklenar J, Holton NJ, Smakowska E, Belkhadir Y, Zipfel C, Rathjen JP (2016) NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in Nicotiana benthamiana. Proc Natl Acad Sci USA 113(12):3389–3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scarpeci TE, Zanor MI, Valle EM (2008) Investigating the role of plant heat shock proteins during oxidative stress. Plant Signaling Behav 3(10):856–857

    Article  Google Scholar 

  • Schaller GE, Bishopp A, Kieber JJ (2015a) The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell 27(1):44–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwessinger B, Rathjen JP (2015) Changing SERKs and priorities during plant life. Trends Plant Sci 20(9):531–533

    Article  CAS  PubMed  Google Scholar 

  • Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci 7:187

    Article  PubMed  PubMed Central  Google Scholar 

  • Sham A, Moustafa K, Al-Ameri S, Al-Azzawi A, Iratni R, AbuQamar S (2015) Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays. PLoS ONE 10(5):e0125666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen R, Pan S, Qi S, Lin X, Cheng S (2010) Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 in gastric cancer. Biochem Biophys Res Commun 394(4):1047–1052

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Preisser EL, Liu B, Pan H, Xiang M, Xie W, Wang S, Wu Q, Li C, Liu Y, Zhou X, Zhang Y (2019) Variation in both host defense and prior herbivory can alter plant–vector–virus interactions. BMC Plant Biol 19(1):556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H, Shibuya N (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 64:204–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Manjunath LE, Kundu P, Sahoo S, Das A, Suma HR, Fox PL, Eswarappa SM (2019) Let-7a-regulated translational readthrough of mammalian AGO1 generates a microRNA pathway inhibitor. EMBO J 38(16):e100727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh Y, Nair AM, Verma PK (2021) Surviving the odds: From perception to survival of fungal phytopathogens under host-generated oxidative burst. Plant Commun 2(3):100142

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinha KV, Anand A, Mukherjee SK, Sanan-Mishra N (2017) RNAi based strategies for enhancing plant resistance to virus infection. In: Datta A, Fakruddin M, Iqbal HMN, Abraham J (eds) Advances in biotechnology chapter. Open Access eBooks, USA

    Google Scholar 

  • Sinha KV, Das SS, Sanan-Mishra N (2021) Overexpression of a RNA silencing suppressor, B2 protein encoded by Flock House virus, in tobacco plants results in tolerance to salt stress. Phytoparasitica 49:299–316

    Article  CAS  Google Scholar 

  • Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158(2):835–843

    Article  CAS  PubMed  Google Scholar 

  • Song X, Li Y, Cao X, Qi Y (2019) MicroRNAs and their regulatory roles in plant–environment interactions. Annu Rev Plant Biol 70:489–525

    Article  CAS  PubMed  Google Scholar 

  • Stein M, Dittgen J, Sanchez-Rodriguez C, Hou BH, Molina A, Schulze-Lefert P, Lipka V, Somerville S (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18:731–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumit R, Sahu BB, Xu M, Sandhu D, Bhattacharyya MK (2012) Arabidopsis nonhost resistance gene PSS1 confers immunity against an oomycete and a fungal pathogen but not a bacterial pathogen that cause diseases in soybean. BMC Plant Biol 12(1):1–15

    Article  CAS  Google Scholar 

  • Sun W, Cao Y, Jansen Labby K, Bittel P, Boller T, Bent AF (2012) Probing the Arabidopsis flagellin receptor: FLS2-FLS2 association and the contributions of specific domains to signaling function. Plant Cell 24(3):1096–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun YW, Tee CS, Ma YH, Wang G, Yao XM, Ye J (2015) Attenuation of histone methyltransferase KRYPTONITE-mediated transcriptional gene silencing by geminivirus. Sci Rep 5:16476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suntio T, Mäkinen K (2012) Abiotic stress responses promote Potato virus A infection in Nicotiana benthamiana. Molecular Plant Pathol 13(7):775–784

    Article  CAS  Google Scholar 

  • Taguchi F, Suzuki T, Takeuchi K, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2009) Glycosylation of flagellin from Pseudomonas syringae pv. tabaci 6605 contributes to evasion of host tobacco plant surveillance system. Physiol Mol Plant Pathol 74(1):11–17

    Article  CAS  Google Scholar 

  • Takahashi H, Suzuki M, Natsuaki K, Shigyo T, Hino K, Teraoka T, Hosokawa D, Ehara Y (2001) Mapping the virus and host genes involved in the resistance response in Cucumber mosaic virus-infected Arabidopsis thaliana. Plant Cell Physiol 42:340–347

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Fukuhara T, Kitazawa H, Kormelink R (2019) Virus latency and the impact on plants. Frontiers Microbiol 10:2764

    Article  Google Scholar 

  • Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics 284(3):173–183

    Article  CAS  PubMed  Google Scholar 

  • Tamaoki D, Seo S, Yamada S, Kano A, Miyamoto A, Shishido H, Miyoshi S, Taniguchi S, Akimitsu K, Gomi K (2013) Jasmonic acid and salicylic acid activate a common defense system in rice. Plant Signal Behav 8(6):e24260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanaka H, Osakabe Y, Katsura S, Mizuno S, Maruyama K, Kusakabe K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis. Plant J 70(4):599–613

    Article  CAS  PubMed  Google Scholar 

  • Thomma BP, Nürnberger T, Joosten MH (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23(1):4–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Travella S, Klimm TE, Keller B (2006) RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiol 142(1):6–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trdá L, Boutrot F, Claverie J, Brulé D, Dorey S, Poinssot B (2015) Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline. Front Plant Sci 6:219

    Article  PubMed  PubMed Central  Google Scholar 

  • Trinks D, Rajeswaran R, Shivaprasad PV, Akbergenov R, Oakeley EJ, Veluthambi K, Hohn T, Pooggin MM (2005) Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J Virol 79:2517–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuda K, Katagiri F (2010) Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr Opin Plant Biol 13(4):459–465

    Article  CAS  PubMed  Google Scholar 

  • van Kammen A (1997) Virus-induced gene silencing in infected and transgenic plants. Trends Plant Sci. https://doi.org/10.1016/S1360-1385(97)01128-X

    Article  Google Scholar 

  • Vanacker H, Carver TL, Foyer CH (2000) Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barley-powdery mildew interaction. Plant Physiol 123:1289–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Várallyay E, Havelda Z (2013) Unrelated viral suppressors of RNA silencing mediate the control of ARGONAUTE1 level. Mol Plant Pathol 14(6):567–575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Várallyay É, Oláh E, Havelda Z (2014) Independent parallel functions of p19 plant viral suppressor of RNA silencing required for effective suppressor activity. Nuc Acids Res 42(1):599–608

    Article  CAS  Google Scholar 

  • Varela ALN, Oliveira JTA, Komatsu S, Silva RGG, Martins TF, Souza PFN, Lobo AKM, Vasconcelos IM, Carvalho FEL, Silveira JAG (2019) A resistant cowpea (Vigna unguiculata [L.] Walp.) genotype became susceptible to cowpea severe mosaic virus (CPSMV) after exposure to salt stress. J Proteomics 194:200–217

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771

    Article  CAS  PubMed  Google Scholar 

  • Vázquez MA, Caballero-Pérez J, Vielle-Calzada JP (2006) A family of microRNAs present in plants and animals. Plant Cell 18(12):3355–3369

    Article  CAS  Google Scholar 

  • Waititu JK, Zhang C, Liu J, Wang H (2020) Plant Non-Coding RNAs: origin, biogenesis, mode of action and their roles in abiotic stress. Intl J Mol Sci 21(21):8401

    Article  CAS  Google Scholar 

  • Wang XQ, Yang PF, Liu Z, Liu WZ, Hu Y, Chen H, Kuang TY, Pei ZM, Shen SH, He YK (2009) Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy. Plant Physiol 149(4):1739–1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang D, Bai Y, Huang Y, Fan M, Liu J, Li Y (2010) Spatially complex neighboring relationships among grassland plant species as an effective mechanism of defense against herbivory. Oecologia 164(1):193–200

    Article  PubMed  Google Scholar 

  • Wang K, Senthil-Kumar M, Ryu CM, Kang L, Mysore KS (2012) Phytosterols play a key role in plant innate immunity against bacterial pathogens by regulating nutrient efflux into the apoplast. Plant Physiol 158:1789–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Albert M, Einig E, Fürst U, Krust D, Felix G (2016) The pattern-recognition receptor CORE of Solanaceae detects bacterial cold-shock protein. Nat Plants 2:16185

    Article  CAS  PubMed  Google Scholar 

  • Weinberger F, Friedlander M (2000) Endogenous and exogenous elicitors of a hypersensitive response in Gracilaria conferta (Rhodophyta). J Appl Phycology 12:139–145

    Article  CAS  Google Scholar 

  • Westerink N, Brandwagt BF, de Wit PJ, Joosten MH (2004) Cladosporium fulvum circumvents the second functional resistance gene homologue at the Cf-4 locus (Hcr9-4E ) by secretion of a stable avr4E isoform. Mol Microbiol 54(2):533–545

    Article  CAS  PubMed  Google Scholar 

  • Westwood JH, McCann L, Naish M, Dixon H, Murphy AM, Stancombe MA, Bennett MH, Powell G, Webb AA, Carr JP (2013) A viral RNA silencing suppressor interferes with abscisic acid-mediated signalling and induces drought tolerance in Arabidopsis thaliana. Mol Plant Pathol 14(2):158–170

    Article  CAS  PubMed  Google Scholar 

  • Whitham S, Dinesh-Kumar SP, Chol D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78:1101–1115

    Article  CAS  PubMed  Google Scholar 

  • Wong JEMM, Gysel K, Birkefeldt TG, Vinther M, Muszyński A, Azadi P, Laursen NS, Sullivan JT, Ronson CW, Stougaard J, Andersen KR (2020) Structural signatures in EPR3 define a unique class of plant carbohydrate receptors. Nat Commun 11(1):3797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo NS, Badger MR, Pogson BJ (2008) A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. Plant Methods 4:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, Zhao Q, Zhang L, Li Y, Yang C, Xie Q (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19:1279–1290

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Mao L, Qi Y (2012) Roles of dicer-like and argonaute proteins in TAS-derived small interfering RNA-triggered DNA methylation. Plant Physiol 160(2):990–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Chen H, Curtis C, Fu ZQ (2014) Go in for the kill: How plants deploy effector-triggered immunity to combat pathogens. Virulence 5(7):710–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Qi T, Li WX, Tian H, Gao H, Wang J, Ge J, Yao R, Ren C, Wang XB, Liu Y, Kang L, Ding SW, Xie D (2017) Viral effector protein manipulates host hormone signaling to attract insect vectors. Cell Res 27(3):402–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. Plos Biol 2(5):E104

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie F, Jones DC, Wang Q, Sun R, Zhang B (2015) Small RNA sequencing identifies miRNA roles in ovule and fibre development. Plant Biotechnol J 13(3):355–369

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Chen F, Mannas JP, Feldman T, Sumner LW, Roossinck MJ (2008) Virus infection improves drought tolerance. New Phytol 180:911–921

    Article  PubMed  Google Scholar 

  • Xu J, Wang G, Wang J, Li Y, Tian L, Wang X, Guo W (2017) The lysin motif-containing proteins, Lyp1, Lyk7 and LysMe3, play important roles in chitin perception and defense against Verticillium dahliae in cotton. BMC Plant Biol 7(1):148

    Article  CAS  Google Scholar 

  • Xue GP, Drenth J, McIntyre CL (2015) TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L) including previously unknown Hsf targets. J Exp Bot 66:1025–1039

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Gou X, He K, Xi D, Du J, Lin H, Li J (2010) BAK1 and BKK1 in Arabidopsis thaliana confer reduced susceptibility to Turnip crinkle virus. Eur J Plant Pathol 127:149–156

    Article  CAS  Google Scholar 

  • Yang YX, Ahammed GJ, Wu C, Fan SY, Zhou YH (2015) Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses. Curr Protein Pept ScI 16(5):450–461

    Article  CAS  PubMed  Google Scholar 

  • Yu D, Fan B, MacFarlane SA, Chen Z (2003) Analysis of the involvement of an inducible Arabidopsis RNA-dependent RNA polymerase in antiviral defense. Mol Plant-Microbe Interact 16(3):206–216

    Article  CAS  PubMed  Google Scholar 

  • Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD, Li Y, González AJ, Yan Z, Kitto SL, Grusak MA, Jackson SA, Stacey G, Cook DR, Green PJ, Sherrier DJ, Meyers BC (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25(23):2540–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Wang Q (2015) MicroRNA-based biotechnology for plant improvement. J Cell Physiol 230:1–15

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Zhou JM (2010) Plant immunity triggered by microbial molecular signatures. Mol Plant 3(5):783–793

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhao H, Gao S, Wang WC, Katiyar-Agarwal S, Huang HD, Raikhel N, Jin H (2011a) Arabidopsis Argonaute 2 regulates innate immunity via miRNA393(∗)-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol Cell 42(3):356–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Chen H, Huang X, Xia R, Zhao Q, Lai J, Teng K, Li Y, Liang L, Du Q, Zhou X, Guo H, Xie Q (2011b) BSCTV C2 attenuates the degradation of SAMDC1 to suppress DNA methylation-mediated gene silencing in Arabidopsis. Plant Cell 23(1):273–288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Xia J, Lii YE, Barrera-Figueroa BE, Zhou X, Gao S, Lu L, Niu D, Chen Z, Leung C, Wong T, Zhang H, Guo J, Li Y, Liu R, Liang W, Zhu JK, Zhang W, Jin H (2012) Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function. Genome Biol 13(3):R20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YJ, Guo L, Gonzales PK, Gendron TF, Wu Y, Jansen-West K, O’Raw AD, Pickles SR, Prudencio M, Carlomagno Y, Gachechiladze MA, Ludwig C, Tian R, Chew J, De Ture M, Lin WL, Tong J, Daughrity LM, Yue M, Song Y, Andersen JW, Castanedes-Casey M, Kurti A, Datta A, Antognetti G, McCampbell A, Rademakers R, Oskarsson B, Dickson DW, Kampmann M, Ward ME, Fryer JD, Link CD, Shorter J, Petrucelli L (2019) Heterochromatin anomalies and double-stranded RNA accumulation underlie C9orf72 poly(PR) toxicity. Science 363(6428):eaav2606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Liu Q, Zhang H, Jia Q, Hong Y, Liu Y (2013) The rubisco small subunit is involved in tobamovirus movement and Tm-22-mediated extreme resistance. Plant Physiol 161(1):374–383

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Huang Y, Hu J, Zhou H, Adeleye AS, Keller AA (2016) 1H NMR and GC–MS based metabolomics reveal defense and detoxification mechanism of cucumber plant under nano-Cu stress. Environ Sci Technol 50(4):2000–2010

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Liu W, Zhao Z, Yang H, Bao Y, Zhang D, Wang Z, Jiang J, Xu Y, Zhang H, Li J, Chen Q, Xu X (2019b) Transcriptome profiling reveals the response process of tomato carrying Cf-19 and Cladosporium fulvum interaction. BMC Plant Biol 19(1):572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, Reiter RJ (2019a) Melatonin synthesis and function: evolutionary history in animals and plants. Front Endocrinol 10:249

    Article  Google Scholar 

  • Zhu S, Gao F, Cao X, Chen M, Ye G, Wei C, Li Y (2005) The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. Plant Physiol 139(4):1935–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Qian WQ, Hua J (2010) Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathog 6:e1000844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu QH, Fan L, Liu Y, Xu H, Llewellyn D, Wilson I (2013) miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton. PLoS ONE 8(12):e84390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zipfel C (2014) Plant pattern-recognition receptors. Trends Immunol 35(7):345–351

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125(4):749–760

    Article  CAS  PubMed  Google Scholar 

  • Zorzatto C, Machado JP, Lopes KV, Nascimento KJ, Pereira WA, Brustolini OJ, Reis PA, Calil IP, Deguchi M, Sachetto-Martins G, Gouveia BC, Loriato VA, Silva MA, Silva FF, Santos AA, Chory J, Fontes EP (2015) NIK1-mediated translation suppression functions as a plant antiviral immunity mechanism. Nature 520(7549):679–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou X, Qin Z, Zhang C, Liu B, Liu J, Zhang C, Lin C, Li H, Zhao T (2015) Over-expression of an S-domain receptor-like kinase extracellular domain improves panicle architecture and grain yield in rice. J Exp Bot 66(22):7197–7209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zvereva AS, Golyaev V, Turco S, Gubaeva EG, Rajeswaran R, Schepetilnikov MV, Srour O, Ryabova LA, Boller T, Pooggin MM (2016) Viral protein suppresses oxidative burst and salicylic acid-dependent autophagy and facilitates bacterial growth on virus-infected plants. New Phytol 211:1020–1034

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by research grants to N.S-M received from NSM from Department of Biotechnology (DBT), Government of India (No. BT/PR14346/AGill/103/1006/2018). S.K.S. acknowledges S.E.R.B. for support as a Distinguished Fellow. K.V.S. received fellowship from DBT. A.R. was supported by Indian science academies' summer research fellowship programme.

Author information

Authors and Affiliations

Authors

Contributions

SKS and NSM conceived the idea and designed the concept. The manuscript draft was prepared by contributions of AR and KVS. The manuscript draft was edited and proof read by SKS and NSM. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Neeti Sanan-Mishra.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Editorial responsibility: Aryadeep Roychoudhury

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, A., Sinha, K.V., Sopory, S.K. et al. Influence of virus–host interactions on plant response to abiotic stress. Plant Cell Rep 40, 2225–2245 (2021). https://doi.org/10.1007/s00299-021-02718-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-021-02718-0

Keywords

Navigation