Skip to main content

Advertisement

Log in

Exogenous melatonin regulates endogenous phytohormone homeostasis and thiol-mediated detoxification in two indica rice cultivars under arsenic stress

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Melatonin enhanced arsenic (As) tolerance by inhibiting As bioaccumulation, modulating the expression of As transporters and phytohormone homeostasis, leading to efficient utilization of thiol machinery for sequestration and detoxification of this toxic metalloid.

Abstract

The present study was aimed at investigating the influence of exogenous melatonin on the regulation of endogenous plant growth regulators and their cumulative effects on metal(loid)-binding ligands in two contrasting indica rice cultivars, viz., Khitish (arsenic sensitive) and Muktashri (arsenic tolerant) under arsenic stress. Melatonin supplementation ameliorated arsenic-induced perturbations by triggering endogenous levels of gibberellic acid and melatonin, via up-regulating the expression of key biosynthetic genes like GA3ox, TDC, SNAT and ASMT. The endogenous abscisic acid content was also enhanced upon melatonin treatment by induced expression of the key anabolic gene, NCED3 and concomitant suppression of ABA8ox1. Enhanced melatonin content induced accumulation of higher polyamines (spermidine and spermine), together with up-regulation of SPDS and SPMS in Khitish, thereby modulating stress condition. On the contrary, melatonin escalated putrescine and spermidine levels in Muktashri, via enhanced expression of ADC and SAMDC. The role of melatonin appeared to be more prominent in Khitish, as evident from better utilization of thiol components like cysteine, GSH, non-protein thiols and phytochelatins, with higher GSH/GSSG ratio, despite down-regulated expression of corresponding thiol-metabolic genes (OsMT2 and OsPCS1) to deal with arsenic toxicity. The extent of arsenic bioaccumulation, which was magnified several folds, particularly in Khitish, was decreased upon melatonin application. Overall, our observation highlighted the fact that melatonin enhanced arsenic tolerance by inhibiting arsenic bioaccumulation, via modulating the expression levels of selected arsenic transporters (OsNramp1, OsPT2, OsPT8, OsLsi1) and controlling endogenous phytohormone homeostasis, leading to efficient utilization of thiol machinery for sequestration and detoxification of this toxic metalloid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbas G, Murtaza B, Bibi I, Shahid M, Niazi N, Khan M, Amjad M, Hussain M, Natasha (2018) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health 15:59

  • Abedi T, Mojiri A (2020) Arsenic uptake and accumulation mechanisms in rice species. Plants 9:129

    Article  PubMed Central  CAS  Google Scholar 

  • Ahammed GJ, Wen X, Liu A, Chen S (2018) Endogenous melatonin deficiency aggravates high temperature-induced oxidative stress in Solanum lycopersicum L. Environ Exp Bot 161:303–311

    Article  CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161e175

    Article  CAS  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019) Melatonin as a chemical substance or as phytomelatonin rich-extracts for use as plant protector and/or biostimulant in accordance with EC legislation. Agronomy 9:570

    Article  CAS  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2020) Melatonin as a regulatory hub of plant hormone levels and action in stress situations. Plant Biol. https://doi.org/10.1111/plb.13202

    Article  PubMed  Google Scholar 

  • Atici Ö, Ağar G, Battal P (2005) Changes in phytohormone contents in chickpea seeds germinating under lead or zinc stress. Biol Plant 49:215–222

    Article  CAS  Google Scholar 

  • Bałabusta M, Szafrańska K, Posmyk MM (2016) Exogenous melatonin improves antioxidant defense in cucumber seeds (Cucumis sativus L.) germinated under chilling stress. Front Plant Sci 7:575

    Google Scholar 

  • Banerjee A, Roychoudhury A (2019) Role of glutathione in plant abiotic stress tolerance. In: Hasanuzzaman M, Fotopoulos V, Nahar K, Fujita M (eds) Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms. Wiley-Blackwell, New Jersey, pp 159–172

    Chapter  Google Scholar 

  • Banerjee A, Roychoudhury A (2020) Gibberellic acid-priming promotes fluoride tolerance in a susceptible indica rice cultivar by regulating the antioxidant and phytohormone homeostasis. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10110-7

    Article  Google Scholar 

  • Banerjee A, Samanta S, Roychoudhury A (2020) Spermine ameliorates prolonged fluoride toxicity in soil-grown rice seedlings by activating the antioxidant machinery and glyoxalase system. Ecotoxicol Environ Saf 189:109737

    Article  PubMed  CAS  Google Scholar 

  • Bano C, Amist N, Singh NB (2020) Role of polyamines in plant abiotic stress tolerance. In: Tripathi DK, Chauhan DK, Prasad SM, Ramawat N (eds) Plant life under changing environment: responses and management. Academic Press, Cambridge, pp 481–496

    Chapter  Google Scholar 

  • Bhowmick S, Pramanik S, Singh P, Mondal P, Chatterjee D, Nriagu J (2018) Arsenic in groundwater of West Bengal, India: a review of human health risks and assessment of possible intervention options. Sci Total Environ 612:148–169

    Article  PubMed  CAS  Google Scholar 

  • Bidabadi SS, VanderWeide J, Sabbatini P (2020) Exogenous melatonin improves glutathione content, redox state and increases essential oil production in two Salvia species under drought stress. Sci Rep 10:6883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biswas A, Swain S, Chowdhury NR, Joardar M, Das A, Mukherjee M, Roychowdhury T (2019) Arsenic contamination in Kolkata metropolitan city: perspective of transportation of agricultural products from arsenic-endemic areas. Environ Sci Pollut Res 26:22929–22944

    Article  CAS  Google Scholar 

  • Bonifacio A, Martins MO, Ribeiro CW, Fontenele AV, Carvalho F, Margis-Pinheiro M, Silveira JAG (2011) Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress. Plant Cell Environ 34:1705–1722

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Lee HY, Hwang OJ, Lee H-J, Lee K, Back K (2015) Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment. J Pineal Res 58:470–478

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarty D, Trivedi PK, Misra P, Tiwari M, Shri M, Shukla D, Kumar S, Rai A, Pandey A, Nigam D, Tripathi RD, Tuli R (2009) Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74:688–702

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Shao Q, Yin L, Younis A, Zheng B (2019) Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci 9:1945

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiwetalu UJ, Mbajiorgu CC, Ogbuagu NJ (2020) Remedial ability of maize (Zea mays) on lead contamination under potted condition and non-potted field soil condition. J Bioresour Bioprod 5:51–59

    Article  Google Scholar 

  • Choudhary SP, Kanwar M, Bhardwaj R, Yu J-Q, Tran L-SP (2012) Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS ONE 7:e33210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cvikrová M, Gemperlová L, Dobrá J, Martincová O, Prásil IT, Gubis J, Vanková R (2012) Effect of heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Sci 182:49–58

    Article  PubMed  CAS  Google Scholar 

  • Denancé N, Sánchez-Vallet A, Goffner D, Molina A (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci 4:155

    Article  PubMed  PubMed Central  Google Scholar 

  • Dias MC, Mariz-Ponte N, Santos C (2019) Lead induces oxidative stress in Pisum sativum plants and changes the levels of phytohormones with antioxidant role. Plant Physiol Biochem 137:121–129

    Article  PubMed  CAS  Google Scholar 

  • Ding W, Zhao Y, Xu JW, Zhao P, Li T, Ma H, Reiter RJ, Yu X (2018) Melatonin: a multifunctional molecule that triggers defense responses against high light and nitrogen starvation stress in Haematococcus pluvialis. J Agric Food Chem 66:7701–7711

    Article  PubMed  CAS  Google Scholar 

  • Dixit G, Singh AP, Kumar A, Mishra S, Dwivedi S, Kumar S, Trivedi PK, Pandey V, Tripathi RD (2015) Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters. Plant Physiol Biochem 99:86–96

    Article  PubMed  CAS  Google Scholar 

  • Domènech J, Mir G, Huguet G, Capdevila M, Molinas M, Atrian S (2006) Plant metallothionein domains: functional insight into physiological metal binding and protein folding. Biochimie 88:583–593

    Article  PubMed  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  • Farooq MA, Islam F, Ali B, Najeeb U, Mao B, Gill RA, Yan G, Siddique KHM, Zhou W (2016) Arsenic toxicity in plants: cellular and molecular mechanisms of its transport and metabolism. Environ Exp Bot 132:42–52

    Article  CAS  Google Scholar 

  • Finnegan P, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu J, Wu Y, Miao Y, Xu Y, Zhao E, Wang J, Sun H, Liu Q, Xue Y, Xu Y, Hu T (2017) Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways. Sci Rep 7:39865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaitonde M (1967) A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 104:627–633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gong B, Sun S, Yan Y, Jing X, Shi Q (2018) Glutathione metabolism and its function in higher plants adapting to stress. In: Gupta D, Palma J, Corpas F (eds) Antioxidants and antioxidant enzymes in higher plants. Springer, Cham, pp 181–205

    Chapter  Google Scholar 

  • Goodarzi A, Namdjoyan S, Soorki AA (2020) Effects of exogenous melatonin and glutathione on zinc toxicity in safflower (Carthamus tinctorius L.) seedlings. Ecotoxicol Environ Saf 201:110853

    Article  PubMed  CAS  Google Scholar 

  • Graham HD, Thomas LD (1961) Rapid, simple colorimetric method for the determination of micro quantities of gibberellic acid. J Pharm Sci 50:44–48

    Article  PubMed  CAS  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  PubMed  CAS  Google Scholar 

  • Gu X, Xue L, Lu L, Xiao J, Song G, Xie M, Zhang H (2020) Melatonin enhances the waterlogging tolerance of Prunus persica by modulating antioxidant metabolism and anaerobic respiration. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10263-5

    Article  Google Scholar 

  • Gupta DK, Vandenhove H, Inouhe M (2013a) Role of phytochelatins in heavy metal stress and detoxification mechanisms in plants. In: Gupta D, Corpas F, Palma J (eds) Heavy metal stress in plants. Springer, Berlin, Heidelberg, pp 73–94

    Chapter  Google Scholar 

  • Gupta K, Dey A, Gupta B (2013b) Plant polyamines in abiotic stress responses. Acta Physiol Plant 35:2015–2036

    Article  CAS  Google Scholar 

  • Hasan MK, Ahammed GJ, Yin L, Shi K, Xia X, Zhou Y, Yu J, Zhou J (2015) Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front Plant Sci 6:601

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Alhaithloul HAS, Parvin K, Bhuyan MHMB, Tanveer M, Mohsin SM, Nahar K, Soliman MH, Mahmud JA, Fujita M (2019) Polyamine action under metal/metalloid stress: regulation of biosynthesis, metabolism, and molecular interactions. Int J Mol Sci 20:3215

    Article  PubMed Central  CAS  Google Scholar 

  • Haskirli H, Yilmaz O, Ozgur R, Uzilday B, Turkan I (2021) Melatonin mitigates UV-B stress via regulating oxidative stress response, cellular redox and alternative electron sinks in Arabidopsis thaliana. Phytochemistry 182:112592

    Article  PubMed  CAS  Google Scholar 

  • Hosseini MS, Samsampour D, Zahedi SM, Zamanian K, Rahman MM, Mostofa MG, Tran LSP (2021) Melatonin alleviates drought impact on growth and essential oil yield of lemon verbena by enhancing antioxidant responses, mineral balance, and abscisic acid content. Physiol Plant. https://doi.org/10.1111/ppl.13335

    Article  PubMed  Google Scholar 

  • Ibrahim MFM, Elbar OHA, Farag R, Hikal M, El-Kelish A, El-Yazied AA, Alkahtani J, El-Gawad HGA (2020) Melatonin counteracts drought induced oxidative damage and stimulates growth, productivity and fruit quality properties of tomato plants. Plants 9:1276

    Article  PubMed Central  CAS  Google Scholar 

  • Jiang C, Cui Q, Feng K, Xu D, Li C, Zheng Q (2016) Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. Acta Physiol Plant 38:82

    Article  CAS  Google Scholar 

  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci 13:3145–3175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jung H-I, Kong M-S, Lee B-R, Kim T-H, Chae M-J, Lee E-J, Jung G-B, Lee C-H, Sung J-K, Kim Y-H (2019) Exogenous glutathione increases arsenic translocation into shoots and alleviates arsenic-induced oxidative stress by sustaining ascorbate–glutathione homeostasis in rice seedlings. Front Plant Sci 10:1089

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanwar MK, Bhardwaj R, Arora P, Chowdhary SP, Sharma P, Kumar S (2012) Plant steroid hormones produced under Ni stress are involved in the regulation of metal uptake and oxidative stress in Brassica juncea L. Chemosphere 86:41–49

    Article  PubMed  CAS  Google Scholar 

  • Karabourniotis G, Liakopoulos G, Nikolopoulos D, Bresta P (2020) Protective and defensive roles of non-glandular trichomes against multiple stresses: structure-function coordination. J For Res 31:1–12

    Article  CAS  Google Scholar 

  • Khan DA, Ali Z, Iftikhar S, Amraiz D, Zaidi NSS, Gul A (2018) Role of phytohormones in enhancing antioxidant defense in plants exposed to metal/metalloid toxicity. In: Hasanuzzaman M, Nahar K, Fujita M (eds) Plants under metal and metalloid stress. Springer, Singapore, pp 367–400

    Chapter  Google Scholar 

  • Lee K, Back K (2017) Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield. J Pineal Res 62:e12392

    Article  CAS  Google Scholar 

  • Li M-Q, Hasan MK, Li C-X, Ahammed GJ, Xia X-J, Shi K, Zhou Y-H, Reiter RJ, Yu J-Q, Xu M-X, Zhou J (2016) Melatonin mediates selenium-induced tolerance to cadmium stress in tomato plants. J Pineal Res 61:291–302

    Article  PubMed  CAS  Google Scholar 

  • Li H, Chang J, Chen H, Wang Z, Gu X, Wei C, Zhang Y, Ma J, Yang J, Zhang X (2017) Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Front Plant Sci 8:295

    PubMed  PubMed Central  Google Scholar 

  • Li X, Ahammed GJ, Zhang X-N, Zhang L, Yan P, Zhang L-P, Fu J-Y, Han W-Y (2021) Melatonin-mediated regulation of anthocyanin biosynthesis and antioxidant defense confer tolerance to arsenic stress in Camellia sinensis L. J Hazard Mater 403:123922

    Article  PubMed  CAS  Google Scholar 

  • Liang B, Ma C, Zhang Z, Wei Z, Gao T, Zhao Q, Ma F, Li C (2018) Long-term exogenous application of melatonin improves nutrient uptake fluxes in apple plants under moderate drought stress. Environ Exp Bot 155:650–661

    Article  CAS  Google Scholar 

  • Lwalaba JLW, Loius LT, Zvobgo G, Richmond MEA, Fu L, Naz S, Mwamba M, Mundende RPM, Zhang G (2020) Physiological and molecular mechanisms of cobalt and copper interaction in causing phyto-toxicity to two barley genotypes differing in Co tolerance. Ecotoxicol Environ Saf 187:109866

    Article  PubMed  CAS  Google Scholar 

  • Majumder B, Das S, Mukhopadhyay S, Biswas AK (2018) Identification of arsenic-tolerant and arsenic-sensitive rice (Oryza sativa L.) cultivars on the basis of arsenic accumulation assisted stress perception, morpho-biochemical responses, and alteration in genomic template stability. Protoplasma 256:193–211

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039

    Article  PubMed  CAS  Google Scholar 

  • Mitra A, Chatterjee S, Moogouei R, Gupta D (2017) Arsenic accumulation in rice and probable mitigation approaches: a review. Agronomy 7:67

    Article  CAS  Google Scholar 

  • Mokgalaka-Matlala NS, Flores-Tavizón E, Castillo-Michel H, Peralta-Videa JR, Gardea-Torresdey JL (2009) Arsenic tolerance in mesquite (Prosopis sp.): low molecular weight thiols synthesis and glutathione activity in response to arsenic. Plant Physiol Biochem 47:822–826

    Article  PubMed  CAS  Google Scholar 

  • Monni S, Uhlig C, Hansen E, Magel E (2001) Ecophysiological responses of Empetrum nigrum to heavy metal pollution. Environ Pollut 112:121–129

    Article  PubMed  CAS  Google Scholar 

  • Mostofa MG, Seraj ZI, Fujita M (2014) Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.) seedlings. Protoplasma 251:1373–1386

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S (2018) Novel perspectives on the molecular crosstalk mechanisms of serotonin and melatonin in plants. Plant Physiol Biochem 132:33–45

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Bhatla SC (2020) Exogenous melatonin modulates endogenous H2S homeostasis and L-cysteine desulfhydrase activity in salt-stressed tomato (Solanum lycopersicum L. var. cherry) seedling cotyledons. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10261-7

    Article  Google Scholar 

  • Mukhopadhyay R, Bhattacharjee H, Rosen BP (2014) Aquaglyceroporins: generalized metalloid channels. Biochim Biophys Acta (BBA) General Subjects 1840:1583–1591

    Article  CAS  Google Scholar 

  • Ni J, Wang Q, Shah F, Liu W, Wang D, Huang S, Fu S, Wu L (2018) Exogenous melatonin confers cadmium tolerance by counterbalancing the hydrogen peroxide homeostasis in wheat seedlings. Molecules 23:799

    Article  PubMed Central  CAS  Google Scholar 

  • Ogawa K (2005) Glutathione-associated regulation of plant growth and stress responses. Antioxid Redox Signal 7:973–981

    Article  PubMed  CAS  Google Scholar 

  • Padumanonda T, Johns J, Sangkasat A, Tiyaworanant S (2014) Determination of melatonin content in traditional thai herbal remedies used as sleeping aids. DARU J Pharm Sci 22:6

    Article  CAS  Google Scholar 

  • Pan W, You Y, Shentu J-L, Weng Y-N, Wang S-T, Xu Q-R, Liu H-J, Du S-T (2020) Abscisic acid (ABA)-importing transporter 1 (AIT1) contributes to the inhibition of Cd accumulation via exogenous ABA application in Arabidopsis. J Hazard Mater 391:122189

    Article  PubMed  CAS  Google Scholar 

  • Panda SK, Upadhyay RK, Nath S (2010) Arsenic stress in plants. J Agron Crop Sci 196:161–174

    Article  CAS  Google Scholar 

  • Park S, Lee K, Kim YS, Back K (2012) Tryptamine 5-hydroxylase-deficient Sekiguchi rice induces synthesis of 5-hydroxytryptophan and N-acetyltryptamine but decreases melatonin biosynthesis during senescence process of detached leaves. J Pineal Res 52:211–216

    Article  PubMed  CAS  Google Scholar 

  • Park S, Lee DE, Jang HB, yeon Y, Kim YS, Back K, (2013) Melatonin rich transgenic rice plants exhibit resistance to herbicide-induced oxidative stress. J Pineal Res 54:258–263

    Article  PubMed  CAS  Google Scholar 

  • Paul S, Roychoudhury A (2018) Transcriptome profiling of abiotic stress-responsive genes during cadmium chloride-mediated stress in two indica rice varieties. J Plant Growth Regul 37:657–667

    Article  CAS  Google Scholar 

  • Paul S, Banerjee A, Roychoudhury A (2018) Role of polyamines in mediating antioxidant defense and epigenetic regulation in plants exposed to heavy metal toxicity. In: Hasanuzzaman M, Nahar K, Fujita M (eds) Plants under metal and metalloid stress. Springer, Singapore, pp 229–247

    Chapter  Google Scholar 

  • Peach K, Tracey MV (1956) Modern methods of plant analysis, vol 4. Springer, Berlin

    Google Scholar 

  • Qian H, Wang J, Yan L (2020) Synthesis of lignin-poly(N-methylaniline)-reduced grapheme oxide hydrogel for organic dye and lead ions removal. J Bioresour Bioprod 5:204–210

    Article  CAS  Google Scholar 

  • Reinecke DM, Wickramarathna AD, Ozga JA, Kurepin LV, Jin AL, Good AG, Pharis RP (2013) Gibberellin 3-oxidase gene expression patterns influence gibberellin biosynthesis, growth, and development in pea. Plant Physiol 163:929–945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roychoudhury A, Banerjee A (2017) Abscisic acid signaling and involvement of mitogen activated protein kinases and calcium-dependent protein kinases during plant abiotic stresses. In: Pandey GK (ed) Mechanism of plant hormone signaling under stress, vol 1. Wiley-Blackwell, New Jersey, pp 197–241

    Chapter  Google Scholar 

  • Roychoudhury A, Basu S, Sarkar SN, Sengupta DN (2008) Comparative physiological and molecular responses of a common aromatic indica rice cultivar to high salinity with non-aromatic indica rice cultivars. Plant Cell Rep 27:1395–1410

    Article  PubMed  CAS  Google Scholar 

  • Roychoudhury A, Paul S, Basu S (2013) Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32:985–1006

    Article  PubMed  CAS  Google Scholar 

  • Saleem MH, Fahad S, Adnan M, Ali M, Rana MS, Kamran M, Ali Q, Hashem IA, Bhantana P, Ali M, Hussain RM (2020) Foliar application of gibberellic acid endorsed phytoextraction of copper and alleviates oxidative stress in jute (Corchorus capsularis L.) plant grown in highly copper-contaminated soil of China. Environ Sci Pollut Res 27:37121–37133

    Article  CAS  Google Scholar 

  • Samanta S, Roychoudhury A (2021) Transporters involved in arsenic uptake, translocation, and efflux in plants. In: Roychoudhury A, Tripathi DK, Deshmukh R (eds) Metal and nutrient transporters in abiotic stress. Elsevier, Academic Press, Cambridge, pp 77–86

    Chapter  Google Scholar 

  • Samanta S, Banerjee A, Roychoudhury A (2020a) Melatonin application differentially modulates the enzymes associated with antioxidative machinery and ascorbate-glutathione cycle during arsenate exposure in indica rice varieties. Plant Biol. https://doi.org/10.1111/plb.13181

    Article  PubMed  Google Scholar 

  • Samanta S, Singh A, Banerjee A, Roychoudhury A (2020b) Exogenous supplementation of melatonin alters representative organic acids and enzymes of respiratory cycle as well as sugar metabolism during arsenic stress in two contrasting indica rice cultivars. J Biotech 324:220–232

    Article  CAS  Google Scholar 

  • Samanta S, Singh A, Roychoudhury A (2020c) Involvement of sulfur in the regulation of abiotic stress tolerance in plants. In: Roychoudhury A, Tripathi DK (eds) Protective chemical agents in the amelioration of plant abiotic stress: biochemical and molecular perspectives. Wiley-Blackwell, New Jersey, pp 437–466

    Chapter  Google Scholar 

  • Sami A, Shah FA, Abdullah M, Zhou X, Yan Y, Zhu Z, Zhou K (2020) Melatonin mitigates cadmium and aluminium toxicity through modulation of antioxidant potential in Brassica napus L. Plant Biol 22:679–690

    Article  PubMed  CAS  Google Scholar 

  • Sarkar A, Paul B (2016) The global menace of arsenic and its conventional remediation—a critical review. Chemosphere 158:37–49

    Article  PubMed  CAS  Google Scholar 

  • Semida WM, Hemida KA, Rady MM (2018) Sequenced ascorbate-proline-glutathione seed treatment elevates cadmium tolerance in cucumber transplants. Ecotoxicol Environ Saf 154:171–179

    Article  PubMed  CAS  Google Scholar 

  • Seth CS, Chaturvedi PK, Misra V (2008) The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotoxicol Environ Saf 71:76–85

    Article  PubMed  CAS  Google Scholar 

  • Shankar S, Shanker U, Shikha (2014) Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation. Sci World J 2014:1–18

  • Sharafi Y, Aghdam MS, Luo Z, Jannatizadeh A, Razavi F, Fard JR, Farmani B (2019) Melatonin treatment promotes endogenous melatonin accumulation and triggers GABA shunt pathway activity in tomato fruits during cold storage. Sci Hortic 254:222–227

    Article  CAS  Google Scholar 

  • Sharif R, Xie C, Zhang H, Arnao MB, Ali M, Ali Q, Muhammad I, Shalmani A, Nawaz MA, Chen P, Li Y (2018) Melatonin and its effects on plant systems. Molecules 23:2352

    Article  PubMed Central  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS (2014) Arsenic toxicity and tolerance mechanisms in crop plants. In: Pessarakli M (ed) Handbook of plant and crop physiology. CRC Press, Boca Raton, pp 762–811

    Google Scholar 

  • Sharma R, Bhardwaj R, Handa N, Gautam V, Kohli SK, Bali S, Kaur P, Thukral AK, Arora S, Ohri P, Vig AP (2017) Responses of phytochelatins and metallothioneins in alleviation of heavy metal stress in plants. In: Ahmad P (ed) Plant metal interaction: emerging remediation techniques. Elsevier, Amsterdam, pp 263–283

    Google Scholar 

  • Sharma A, Wang J, Xu D, Tao S, Chong S, Yan D, Li Z, Yuan H, Zheng B (2020) Melatonin regulates the functional components of photosynthesis, antioxidant system, gene expression, and metabolic pathways to induce drought resistance in grafted Carya cathayensis plants. Sci Total Environ 713:136675

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Chan Z (2014) Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. J Integr Plant Biol 56:114–121

    Article  PubMed  CAS  Google Scholar 

  • Shrivastava A, Ghosh D, Dash A, Bose S (2015) Arsenic contamination in soil and sediment in India: sources, effects, and remediation. Curr Pollut Rep 1:35–46

    Article  CAS  Google Scholar 

  • Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015) Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol Environ Saf 112:247–270

    Article  PubMed  CAS  Google Scholar 

  • Singh AP, Dixit G, Kumar A, Mishra S, Singh PK, Dwivedi S, Trivedi PK, Chakrabarty D, Mallick S, Pandey V, Dhankher OP, Tripathi RD (2016) Nitric oxide alleviated arsenic toxicity by modulation of antioxidants and thiol metabolism in rice (Oryza sativa L.). Front Plant Sci 6:1272

    Article  PubMed  PubMed Central  Google Scholar 

  • Sobieszczuk-Nowicka E, Legocka J (2013) Plastid-associated polyamines: their role in differentiation, structure, functioning, stress response and senescence. Plant Biol 16:297–305

    Article  PubMed  CAS  Google Scholar 

  • Spormann S, Soares C, Teixeira J, Fidalgo F (2020) Polyamines as key regulatory players in plants under metal stress—a way for an enhanced tolerance. Ann Appl Biol. https://doi.org/10.1111/aab.12660

    Article  Google Scholar 

  • Sun J, Cui J, Luo C, Gao L, Chen Y, Shen Z (2013) Contribution of cell walls, nonprotein thiols, and organic acids to cadmium resistance in two cabbage varieties. Arch Environ Contam Toxicol 64:243–252

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Li X, Wang Z, Sun Z, Zhu X, Liu S, Song F, Liu F, Wang Y (2018) Cold priming induced tolerance to subsequent low temperature stress is enhanced by melatonin application during recovery in wheat. Molecules 23:1091

    Article  PubMed Central  CAS  Google Scholar 

  • Tiwari M, Sharma D, Dwivedi S, Singh M, Tripathi RD, Trivedi PK (2014) Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance. Plant Cell Environ 37:140–152

    Article  PubMed  CAS  Google Scholar 

  • Tripathi P, Tripathi RD, Singh RP, Dwivedi S, Goutam D, Shri M, Trivedi PK, Chakrabarty D (2013) Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defence system. Ecol Eng 52:96–103

    Article  Google Scholar 

  • Turk H, Genisel M (2019) Melatonin-related mitochondrial respiration responses are associated with growth promotion and cold tolerance in plants. Cryiobiology 92:76–85

    Article  Google Scholar 

  • Ulhassan Z, Huang Q, Gill RA, Ali S, Mwamba TM, Ali B, Hina F, Zhou W (2019) Protective mechanisms of melatonin against selenium toxicity in Brassica napus: insights into physiological traits, thiol biosynthesis and antioxidant machinery. BMC Plant Biol 19:507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waśkiewicz A, Gładysz O, Szentner K, Goliński P (2014) Role of glutathione in abiotic stress tolerance. In: Ahmad P (Ed) Oxidative damage to plants: antioxidant networks and signaling, Elsevier, Academic Press, pp 149–181

  • Wei W, Li Q-T, Chu Y-N, Reiter RJ, Yu X-M, Zhu D-H, Zhang W-K, Ma B, Lin Q, Zhang J-S, Chen S-Y (2015) Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot 66:695–707

    Article  PubMed  CAS  Google Scholar 

  • Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599

    Article  PubMed  Google Scholar 

  • Xu W, Cai S-Y, Zhang Y, Wang Y, Ahammed GJ, Xia X-J, Shi K, Zhou Y-H, Yu J-Q, Reiter RJ, Zhou J (2016) Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. J Pineal Res 61:457–469

    Article  PubMed  CAS  Google Scholar 

  • Yao J-W, Ma Z, Ma Y-Q, Zhu Y, Lei M-Q, Hao C-Y, Chen L-Y, Xu Z-Q, Huang X (2020) Role of melatonin in UV-B signaling pathway and UV-B stress resistance in Arabidopsis thaliana. Plant Cell Environ 44:114–129

    Article  PubMed  CAS  Google Scholar 

  • Yu X-Z, Lin Y-J, Zhang Q (2019) Metallothioneins enhance chromium detoxification through scavenging ROS and stimulating metal chelation in Oryza sativa. Chemosphere 220:300–313

    Article  PubMed  CAS  Google Scholar 

  • Zagorchev L, Seal C, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–7432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zahedi SM, Hosseini MS, Abadía J, Marjani M (2020) Melatonin foliar sprays elicit salinity stress tolerance and enhance fruit yield and quality in strawberry (Fragaria × ananassa Duch.). Plant Physiol Biochem 149:313–323

    Article  PubMed  CAS  Google Scholar 

  • Zhan H, Nie X, Zhang T, Li S, Wang X, Du X, Tong W, Song W (2019) Melatonin: a small molecule but important for salt stress tolerance in plants. Int J Mol Sci 20:709

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang H-J, Zhang N, Yang R-C, Wang L, Sun Q-Q, Li D-B, Cao Y-Y, Weeda S, Zhao B, Ren S, Guo Y-D (2014) Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA interaction in cucumber (Cucumis sativus L.). J Pineal Res 57:269–279

    Article  PubMed  CAS  Google Scholar 

  • Zhu XF, Jiang T, Wang ZW, Lei GJ, Shi YZ, Li GX, Zheng SJ (2012) Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. J Hazard Mater 239–240:302–307

    Article  PubMed  CAS  Google Scholar 

  • Zimeri AM, Dhankher OP, McCaig B, Meagher RB (2005) The plant MT1 metallothioneins are stabilized by binding cadmiums and are required for cadmium tolerance and accumulation. Plant Mol Biol 58:839–855

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial assistance from Science and Engineering Research Board, Government of India through the grant [EMR/2016/004799] and Department of Higher Education, Science and Technology and Biotechnology, Government of West Bengal, through the grant [264(Sanc.)/ST/P/S&T/1G-80/2017] to Dr. Aryadeep Roychoudhury is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

SS performed all the experiments, generated data and drafted the manuscript. AB assisted SS in most of the experiments. ARC designed all the experiments, critically analyzed the results, incorporated necessary changes in the manuscript, and supervised the overall work.

Corresponding author

Correspondence to Aryadeep Roychoudhury.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in publication of the manuscript.

Additional information

Communicated by Prakash P. Kumar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1219 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, S., Banerjee, A. & Roychoudhury, A. Exogenous melatonin regulates endogenous phytohormone homeostasis and thiol-mediated detoxification in two indica rice cultivars under arsenic stress. Plant Cell Rep 40, 1585–1602 (2021). https://doi.org/10.1007/s00299-021-02711-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-021-02711-7

Keywords

Navigation