Skip to main content
Log in

Ethylene involvement in the regulation of heat stress tolerance in plants

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Because of the rise in global temperature, heat stress has become a major concern for crop production. Heat stress deteriorates plant productivity and alters phenological and physiological responses that aid in precise monitoring and sensing of mild-to-severe transient heat stress. Plants have evolved several sophisticated mechanisms including hormone-signaling pathways to sense heat stimuli and acquire heat stress tolerance. In response to heat stress, ethylene, a gaseous hormone, is produced which is indispensable for plant growth and development and tolerance to various abiotic stresses including heat stress. The manipulation of ethylene in developing heat stress tolerance targeting ethylene biosynthesis and signaling pathways has brought promising out comes. Conversely increased ethylene biosynthesis and signaling seem to exhibit inhibitory effects in plant growth responses from primitive to maturity stages. This review mainly focuses on the recent studies of ethylene involvement in plant responses to heat stress and its functional regulation, and molecular mechanism underlying the plant responses in the mitigation of heat-induced damages. Furthermore, this review also describes the crosstalk between ethylene and other signaling molecules under heat stress and approaches to improve heat stress tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACC:

1-Aminocyclopropane-1-caroboxylic acid

ACO:

1-Aminocyclopropane-1-caroboxylic acid oxidase

ACS:

1-Aminocyclopropane-1-caroboxylic acid synthase

AVG:

Aminoethoxy vinyl glycine

CEF:

Cyclic electron flow

CMT:

Chromomethylase

CTR:

Constitutive triple response

DRM:

Domains rearranged methyltransferase

EBP:

Ethylene-responsive element-binding protein

EIL:

Ethylene insensitive-like

EIN:

Ethylene insensitive

EREB:

Ethylene-responsive element-binding protein

ERF:

Ethylene response factor

ERS:

Ethylene response sensor

ETR:

Ethylene response

FPKM:

Fragments Per Kb per Million fragments

GEO:

Gene Expression Omnibus

Hsf:

Heat shock factor

HSP:

Heat shock protein

LHC:

Light-harvesting complexes

MCP:

1-Methylcyclopropene

NADPH oxidase:

Nicotinamide adenine dinucleotide phosphate oxidase

NO:

Nitric oxide

Nr:

Never ripe

OEC:

Oxygen-evolving complex

PCD:

Programmed cell death

PS:

Photosystem

RAP:

The Rice Annotation Project

RNS:

Reactive nitrogen species

SNP:

Sodium nitroprusside

TAIR:

The Arabidopsis Information Resource

UBP:

Oligouridylate-binding protein

References

  • Agrawal D, Allakhverdiev SI, Jajoo A (2016) Cyclic electron flow plays an important role in protection of spinach leaves under high temperature stress. Russ J Plant Physiol 63:210–215

    Article  CAS  Google Scholar 

  • Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin GB et al (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17:2954–2965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali S, Rizwan M, Arif MS, Ahmad R, Hasanuzzaman M, Ali B, Hussain A (2020) Approaches in enhancing thermotolerance in plants: an updated review. J Plant Growth Regul 39:456–480

    Article  CAS  Google Scholar 

  • Allakhverdiev SI, Hayashi H, Nishiyama Y, Ivanov AG, Aliev JA, Klimov VV, Carpentier R (2003) Glycinebetaine protects the D1/D2/Cytb559 complex of photosystem II against photo-induced and heat-induced inactivation. J Plant Physiol 160:41–49

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541

    Article  CAS  PubMed  Google Scholar 

  • Antunes MDC, Sfakiotakis EM (2000) Effect of high temperature stress on ethylene biosynthesis, respiration and ripening of ‘Hayward’kiwifruit. Postharvest Biol Tech 20:251–259

    Article  CAS  Google Scholar 

  • Aro EM, Suorsa M, Rokka A, Allahverdiyeva Y, Paakkarinen V, Saleem A et al (2005) Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J Exp Bot 56:347–356

    Article  CAS  PubMed  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB, Cammarano D (2015) Rising temperatures reduce global wheat production. Nat Clim Chang 5:143–147

    Article  Google Scholar 

  • Asthir B (2015) Mechanisms of heat tolerance in crop plants. Biol Plant 59:620–628

    Article  CAS  Google Scholar 

  • Atta-Aly MA (1992) Effect of high temperature on ethylene biosynthesis by tomato fruit. Postharvest Biol Tech 2:19–24

    Article  CAS  Google Scholar 

  • Balfagón D, Sengupta S, Gómez-Cadenas A, Fritschi FB, Azad RK, Mittler R, Zandalinas SI (2019) Jasmonic acid is required for plant acclimation to a combination of high light and heat stress. Plant Physiol 181:1668–1682

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartee L, Malagnac F, Bender J (2001) Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev 15:1753–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barua D, Downs CA, Heckathorn SA (2003) Variation in chloroplast small heat-shock protein function is a major determinant of variation in thermotolerance of photosynthetic electron transport among ecotypes of Chenopodium album. Funct Plant Biol 30:1071–1079

    Article  CAS  PubMed  Google Scholar 

  • Biggs MS, Woodson WR, Handa AK (1988) Biochemical basis of high-temperature inhibition of ethylene biosynthesis in ripening tomato fruits. Physiol Plant 72:572–578

    Article  CAS  Google Scholar 

  • Borbély P, Bajkán S, Poór P, Tari I (2019) Exogenous 1-Aminocyclopropane-1-carboxylic acid controls photosynthetic activity, accumulation of reactive oxygen or nitrogen species and macroelement content in tomato in long-term experiments. J Plant Growth Regul 38:1110–1126

    Article  Google Scholar 

  • Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollunder J, Meins F Jr, Kovalchuk I (2010) Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PLoS ONE 3(5):e9514

    Article  Google Scholar 

  • Cai H, Yang S, Yan Y, Xiao Z, Cheng J, Wu J, Huang R (2015) CaWRKY6 transcriptionally activates CaWRKY40, regulates Ralstonia solanacearum resistance, and confers high-temperature and high-humidity tolerance in pepper. J Exp Bot 66:3163–3174

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Jacobsen SE (2002) Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc Nat Acad Sci USA 99:16491–16498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceusters J, Van de Poel B (2018) Ethylene exerts species-specific and age-dependent control of photosynthesis. Plant Physiol 176:2601–2612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang C, Wang B, Shi L, Li Y, Duo L, Zhang W (2010) Alleviation of salinity stress-induced inhibition of seed germination in cucumber (Cucumis sativus L.) by ethylene and glutamate. J Plant Physiol 167:1152–1156

    Article  CAS  PubMed  Google Scholar 

  • Chen TH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13:499–505

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Burke JJ, Velten J, Xin Z (2006) FtsH11 protease plays a critical role in Arabidopsis thermotolerance. Plant J 48:73–84

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Yang Q, Gruber M, Kang J, Sun Y, Ding W, Zhang T, Zhang X (2012) Expression of an alfalfa (Medicago sativa L.) ethylene response factor gene MsERF8 in tobacco plants enhances resistance to salinity. Mol Biol Rep 39:6067–6075

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Grimplet J, David K, Castellarin SD, Terol J, Wong DC et al (2018) Ethylene receptors and related proteins in climacteric and non-climacteric fruits. Plant Sci 276:63–72

    Article  CAS  PubMed  Google Scholar 

  • Cheng MC, Liao PM, Kuo WW, Lin TP (2013) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162:1566–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cicchino MA, Rattalino Edreira JI, Otegui ME (2013) Maize physiological responses to heat stress and hormonal plant growth regulators related to ethylene metabolism. Crop Sci 53:2135–2146

    Article  CAS  Google Scholar 

  • Clarke SM, Cristescu SM, Miersch O, Harren FJ, Wasternack C, Mur LA (2009) Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol 182:175–187

    Article  CAS  PubMed  Google Scholar 

  • Cortleven A, Leuendorf JE, Frank M, Pezzetta D, Bolt S, Schmulling T (2019) Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ 42:998–1018

    Article  CAS  PubMed  Google Scholar 

  • Costa ML, Civello PM, Chaves AR, Martínez GA (2005) Effect of ethephon and 6-benzylaminopurine on chlorophyll degrading enzymes and a peroxidase-linked chlorophyll bleaching during post-harvest senescence of broccoli (Brassica oleracea L.) at 20°C. Postharvest Biol Tech 35:191–199

    Article  CAS  Google Scholar 

  • Couée I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459

    Article  PubMed  Google Scholar 

  • Del Río LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66:2827–2837

    Article  PubMed  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Nat Acad Sci 98:13454–13459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demirevska-Kepova K, Holzer R, Simova-Stoilova L, Feller U (2005) Heat stress effects on ribulose-1, 5-bisphosphate carboxylase/oxygenase, Rubisco binding protein and Rubisco activase in wheat leaves. Biol Plant 49:521–525

    Article  CAS  Google Scholar 

  • Deokar AA, Kondawar V, Kohli D, Aslam M, Jain PK, Karuppayil SM, Varshney RK, Srinivasan R (2015) The CarERF genes in chickpea (Cicer arietinum L.) and the identification of CarERF116 as abiotic stress responsive transcription factor. Funct Int Gen 15:27–46

    Article  CAS  Google Scholar 

  • Dias AS, Barreiro MG, Campos PS, Ramalho JC, Lidon FC (2010) Wheat cellular membrane thermotolerance under heat stress. J Agron Crop Sci 196:100–108

    Article  CAS  Google Scholar 

  • Divi UK, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151–165

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobra J, Cerny M, Storchova H, Dobrev P, Skalak J, Jedelsky PL et al (2015) The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis. Plant Sci 231:52–61

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Zhen Z, Peng J, Chang L, Gong Q, Wang NN (2011) Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis. J Exp Bot 62:4875–4887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downs CA, McDougall KE, Woodley CM, Fauth JE, Richmond RH, Kushmaro A et al (2013) Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching. PLoS ONE 8:e77173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durán-Soria S, Pott DM, Osorio S, Vallarino JG (2020) Sugar signaling during fruit ripening. Front Plant Sci 11:1329

    Article  Google Scholar 

  • Enami I, Kamo M, Ohta H, Takahashi S, Miura T, Kusayanagi M et al (1998) Intramolecular cross-linking of the extrinsic 33-kDa protein leads to loss of oxygen evolution but not its ability of binding to photosystem II and stabilization of the manganese cluster. J Biol Chem 273:4629–4634

    Article  CAS  PubMed  Google Scholar 

  • Fancy NN, Bahlmann AK, Loake GJ (2017) Nitric oxide function in plant abiotic stress. Plant Cell Environ 40:462–472

    Article  CAS  PubMed  Google Scholar 

  • Field RJ, Barrowclough PM (1989) Temperature-induced changes in ethylene production and implications for post-harvest physiology. In: Clijsters H, De Proft M, Marcelle R, Van Poucke M (eds) Biochemical and Physiological Aspects of Ethylene Production in Lower and Higher Plants. Adv Agric Biotechnol 26. Springer, Dordrecht

  • Finnegan EJ, Dennis ES (1993) Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana. Nucleic Acids Res 21:2383–2388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finnegan EJ, Peacock WJ, Dennis ES (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Nat Acad Sci USA 93:8449–8454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finnegan EJ, Peacock WJ, Dennis ES (2000) DNA methylation, a key regulator of plant development and other processes. Curr Opin Genet Dev 10:217–223

    Article  CAS  PubMed  Google Scholar 

  • Firon N, Pressman E, Meir S, Khoury R, Altahan L (2012) Ethylene is involved in maintaining tomato (Solanum lycopersicum) pollen quality under heat-stress conditions. AoB Plants. https://doi.org/10.1093/aobpla/pls024

    Article  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  CAS  PubMed  Google Scholar 

  • Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M et al (2009) Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot 60:3891–3908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao GZ, Li J, Li H, Li F, Xu K, Yan GX et al (2014) Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings. Breed Sci 64:125–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greer DH, Weedon MM (2012) Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate. Plant Cell Environ 35:1050–1064

    Article  PubMed  Google Scholar 

  • Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 86:377–384

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Fujita M (2012) Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat (‘Triticumaestivum’ L.) seedlings by modulating the antioxidant defense and glyoxalase system. Aust J Crop Sci 6:1314

    CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed  PubMed Central  Google Scholar 

  • Haußühl K, Andersson B, Adamska I (2001) A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem II. EMBO J 20:713–722

    Article  PubMed  PubMed Central  Google Scholar 

  • Hays DB, Do JH, Mason RE, Morgan G, Finlayson SA (2007) Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Sci 172:1113–1123

    Article  CAS  Google Scholar 

  • Heckathorn SA, Downs CA, Sharkey TD, Coleman JS (1998) The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress. Plant Physiol 116:439–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heckathorn SA, Ryan SL, Baylis JA, Wang D, Hamilton EW, Cundiff L, Luthe DS (2002) In vivo evidence from an Agrostis stolonifera selection genotype that chloroplast small heat-shock proteins can protect photosystem II during heat stress. Funct Plant Biol 29:935–946

    Article  PubMed  Google Scholar 

  • Horváth I, Glatz A, Varvasovszki V, Török Z, Páli T, Balogh G et al (1998) Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a “fluidity gene.” Proc Natl Acad Sci 95:3513–3518

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsieh EJ, Cheng MC, Lin TP (2013) Functional characterization of an abiotic stress-inducible transcription factor AtERF53 in Arabidopsis thaliana. Plant Mol Biol 82:223–237

    Article  CAS  PubMed  Google Scholar 

  • Hu N, Tang N, Yan F, Bouzayen M, Li Z (2014) Effect of LeERF1 and LeERF2 overexpression in the response to salinity of young tomato (Solanum lycopersicum cv. Micro-Tom) seedlings. Acta Physiol Plant 36:1703–1712

    Article  CAS  Google Scholar 

  • Hu S, Ding Y, Zhu C (2020) Sensitivity and responses of chloroplasts to heat stress in plants. Front Plant Sci 11:375

    Article  PubMed  PubMed Central  Google Scholar 

  • Huberman M, Riov J, Goldschmidt EE, Apelbaum A, Goren R (2013) The novel ethylene antagonist, 3-cyclopropyl-1-enyl-propanoic acid sodium salt (CPAS), increases grain yield in wheat by delaying leaf senescence. Plant Growth Regul 73:249–255

    Article  Google Scholar 

  • Iqbal N, Nazar R, Khan MIR, Khan NA (2012) Variation in photosynthesis and growth of mustard cultivars: role of ethylene sensitivity. Sci Hort 135:1–6

    Article  CAS  Google Scholar 

  • Iqbal N, Umar S, Khan N, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34–42

    Article  CAS  Google Scholar 

  • Ivanov AG, Velitchkova MY, Allakhverdiev SI, Huner NP (2017) Heat stress-induced effects of photosystem I: an overview of structural and functional responses. Photosynth Res 133:17–30

    Article  CAS  PubMed  Google Scholar 

  • Jacob P, Hirt H, Bendahmane A (2017) The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotech J 15:405–414

    Article  CAS  Google Scholar 

  • Jacob-Wilk D, Holland D, Goldschmidt EE, Riov J, Eyal Y (1999) Chlorophyll breakdown by chlorophyllase: isolation and functional expression of the Chlase1 gene from ethylene-treated citrus fruit and its regulation during development. Plant J 20:653–661

    Article  CAS  PubMed  Google Scholar 

  • Jagendorf AT, Takabe T (2001) Inducers of glycinebetaine synthesis in barley. Plant Physiol 127:1827–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janda T, Tajti J, Hamow KÁ, Marček T, Ivanovska B, Szalai G et al (2020) Acclimation of photosynthetic processes and metabolic responses to elevated temperatures in cereals. Physiol Plant. https://doi.org/10.1111/ppl.13207

    Article  PubMed  Google Scholar 

  • Jegadeesan S, Beery A, Altahan L, Meir S, Pressman E, Firon N (2018a) Ethylene production and signaling in tomato (Solanum lycopersicum) pollen grains is responsive to heat stress conditions. Plant Reprod 31:367–383

    Article  CAS  PubMed  Google Scholar 

  • Jegadeesan S, Chaturvedi P, Ghatak A, Pressman E, Meir S, Faigenboim A et al (2018b) Proteomics of heat-stress and ethylene-mediated thermotolerance mechanisms in tomato pollen grains. Front Plant Sci 9:1558

    Article  PubMed  PubMed Central  Google Scholar 

  • Jespersen D, Huang B (2015) Proteins associated with heat-induced leaf senescence in creeping bentgrass as affected by foliar application of nitrogen, cytokinins, and an ethylene inhibitor. Proteomics 15:798–812

    Article  CAS  PubMed  Google Scholar 

  • Jespersen D, Yu J, Huang B (2015) Metabolite responses to exogenous application of nitrogen, cytokinin, and ethylene inhibitors in relation to heat-induced senescence in creeping bentgrass. PLoS ONE 10:e0123744

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia Y, Li W (2015) Characterisation of lipid changes in ethylene-promoted senescence and its retardation by suppression of phospholipase Dδ in Arabidopsis leaves. Front Plant Sci 6:1045

    Article  PubMed  PubMed Central  Google Scholar 

  • Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, Jeddeloh JA et al (2003) Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163:1109–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato Y, Sakamoto W (2009) Protein quality control in chloroplasts: a current model of D1 protein degradation in the photosystem II repair cycle. J Biochem 146:463–469

    Article  CAS  PubMed  Google Scholar 

  • Kaur H, Ozga JA, Reinecke DM (2020) Balancing of hormonal biosynthesis and catabolism pathways, a strategy to ameliorate the negative effects of heat stress on reproductive growth. Plant Cell Environ. https://doi.org/10.1111/pce.13820

    Article  PubMed  Google Scholar 

  • Kaushal N, Awasthi R, Gupta K, Gaur P, Siddique KH, Nayyar H (2013) Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Funct Plant Biol 40:1334–1349

    Article  CAS  PubMed  Google Scholar 

  • Ketsa S, Chidtragool S, Klein JD, Lurie S (1999) Ethylene synthesis in mango fruit following heat treatment. Postharvest Biol Technol 15:65–72

    Article  CAS  Google Scholar 

  • Khan NA (2004) An evaluation of the effects of exogenous ethephon, an ethylene releasing compound, on photosynthesis of mustard (Brassica juncea) cultivars that differ in photosynthetic capacity. BMC Plant Biol 4:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Per TS, Khan NA (2013) Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal Behav 8:e26374

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem 80:67–74

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Trivellini A, Chhillar H, Chopra P, Ferrante A, Khan NA, Ismail AM (2020) The significance and functions of ethylene in flooding stress tolerance in plants. Enviro Exp Bot 179:104188

    Article  CAS  Google Scholar 

  • Kocsy G, Tari I, Vanková R, Zechmann B, Gulyás Z, Poór P, Galiba G (2013) Redox control of plant growth and development. Plant Sci 211:77–91

    Article  CAS  PubMed  Google Scholar 

  • Kolbert Z, Feigl G, Freschi L, Poór P (2019) Gasotransmitters in action: nitric oxide-ethylene crosstalk during plant growth and abiotic stress responses. Antioxidants 8:167

    Article  CAS  PubMed Central  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  CAS  PubMed  Google Scholar 

  • Kuk YI, Shin JS, Burgos NR, Hwang TE, Han O, Cho BH et al (2003) Antioxidative enzymes offer protection from chilling damage in rice plants. Crop Sci 43:2109

    Article  CAS  Google Scholar 

  • Larkindale J, Huang B (2004) Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J Plant Physiol 161:405–413

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Huang B (2005) Effects of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for creeping bentgrass. Plant Growth Regul 47:17–28

    Article  CAS  Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E et al (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • León P, Sheen J (2003) Sugar and hormone connections. Trends Plant Sci 8:110–116

    Article  PubMed  Google Scholar 

  • Leshem YY, Wills RB, Ku VVV (1998) Evidence for the function of the free radical gas—nitric oxide (NO•)—as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol Biochem 36:825–833

    Article  CAS  Google Scholar 

  • Li X, Lawas LM, Malo R, Glaubitz U, Erban A, Mauleon R et al (2015) Metabolic and transcriptomic signatures of rice floral organs reveal sugar starvation as a factor in reproductive failure under heat and drought stress. Plant Cell Environ 38:2171–2192

    Article  CAS  PubMed  Google Scholar 

  • Liao JL, Zhou HW, Peng Q et al (2015) Transcriptome changes in rice (Oryza sativa L.) in response to high night temperature stress at the early milky stage. BMC Genomics 16:1–14

    Article  Google Scholar 

  • Lindroth AM, Cao X, Jackson JP, Zilberman D, McCallum CM, Henikoff S, Jacobsen SE (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Sci 292:2077–2080

    Article  CAS  Google Scholar 

  • Liu H, Charng Y (2012) Acquired thermotolerance independent of heat shock factor A1 (HsfA1), the master regulator of the heat stress response. Plant Signal Behav 7:547–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Xia Y, Liu T, Dai S, Hou X (2018) The DNA methylome and association of differentially methylated regions with differential gene expression during heat stress in Brassica rapa. Int J Mol Sci 9(19):1414

    Article  Google Scholar 

  • Liu J, Xu L, Wang Y, Han L (2019) Ethephon treatment reduced Mondo grass (Ophiopogon japonicus) gas exchange rate and gene expression of Rbcs. Eur J Hortic Sci 84:106–112

    Article  Google Scholar 

  • Locato V, Gadaleta C, De Gara L, De Pinto MC (2008) Production of reactive species and modulation of antioxidant network in response to heat shock: a critical balance for cell fate. Plant Cell Environ 31:1606–1619

    Article  CAS  PubMed  Google Scholar 

  • Lv WT, Lin B, Zhang M, Hua XJ (2011) Proline accumulation is inhibitory to Arabidopsis seedlings during heat stress. Plant Phys 156:1921–1933

    Article  CAS  Google Scholar 

  • Ma Y, Zhang L, Zhang J, Chen J, Wu T, Zhu S, Yan S, Zhao X, Zhong G (2014) Expressing a Citrus ortholog of Arabidopsis ERF1 enhanced cold-tolerance in tobacco. Sci Hort 174:64–76

    Article  Google Scholar 

  • Martínez DE, Costa ML, Gomez FM, Otegui MS, Guiamet JJ (2008) Senescence-associated vacuoles’ are involved in the degradation of chloroplast proteins in tobacco leaves. Plant J 56:196–206

    Article  PubMed  Google Scholar 

  • Mathieu AS, Dobrev PI, Tarkowská D, Pospíšil J, Motyka V, Jacquemin G et al (2020) Phytohormone profile and CiFL1 expression in young seedlings of Cichoriumintybus L. var sativum exposed to high temperature in relation to vernalization and de-vernalization processes. Environ Exp Bot 178:104127

    Article  CAS  Google Scholar 

  • Mathur S, Agrawal D, Jajoo A (2014) Photosynthesis: response to high temperature stress. J Photochem Photobiol B Biol 137:116–126

    Article  CAS  Google Scholar 

  • Müller M, Munné-Bosch S (2015) Ethylene response factors: a key regulatory hub in hormone and stress signalling. Plant Physiol 169:32–41

    Article  PubMed  PubMed Central  Google Scholar 

  • Munné-Bosch S, Penuelas J, Asensio D, Llusia J (2004) Airborne ethylene may alter antioxidant protection and reduce tolerance of holm oak to heat and drought stress. Plant Physiol 136:2937–2947

    Article  PubMed  PubMed Central  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta Bioenerg 1767:414–421

    Article  CAS  Google Scholar 

  • Najeeb U, Sarwar M, Atwell BJ, Bange MP, Tan DK (2017) Endogenous ethylene concentration is not a major determinant of fruit abscission in heat-stressed cotton (Gossypiumhirsutum L.). Front Plant Sci 8:1615

    Article  PubMed  PubMed Central  Google Scholar 

  • Narayanan S (2018) Effects of high temperature stress and traits associated with tolerance in wheat. Open Access J Sci 2:177–186

    Article  Google Scholar 

  • Narayanan S, Tamura PJ, Roth MR, Prasad PV, Welti R (2016) Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations. Plant Cell Environ 39:787–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neta-Sharir I, Isaacson T, Lurie S, Weiss D (2005) Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell 17:1829–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen CC, Nakaminami K, Matsui A, Watanabe S, Kanno Y, Seo M, Seki M (2017) Overexpression of oligouridylate binding protein 1b results in ABA hypersensitivity. Plant Signal Behav 12:e1282591

    Article  PubMed  PubMed Central  Google Scholar 

  • Obiero CO, Milroy SP, Bell RW (2020) Photosynthetic and respiratory response of potato leaves of different ages during and after an episode of high temperature. J Agron Crop Sci 206:352–362

    Article  CAS  Google Scholar 

  • Ozga JA, Kaur H, Savada RP, Reinecke DM (2017) Hormonal regulation of reproductive growth under normal and heat-stress conditions in legume and other model crop species. J Exp Bot 68:1885–1894

    CAS  PubMed  Google Scholar 

  • Pan C, Zhang H, Ma Q, Fan F, Fu R, Ahammed GJ et al (2019) Role of ethylene biosynthesis and signaling in elevated CO2-induced heat stress response in tomato. Planta 250:563–572

    Article  CAS  PubMed  Google Scholar 

  • Parankusam S, Adimulam SS, Bhatnagar-Mathur P, Sharma KK (2017) Nitric oxide (NO) in plant heat stress tolerance: current knowledge and perspectives. Front Plant Sci 8:1582

    Article  PubMed  PubMed Central  Google Scholar 

  • Park CJ, Seo YS (2015) Heat shock proteins: a review of the molecular chaperones for plant immunity. Plant Pathol J 31:323–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul P, Mesihovic A, Chaturvedi P, Ghatak A, Weckwerth W, Böhmer M, Schleiff E (2020) Structural and functional heat stress responses of chloroplasts of Arabidopsis thaliana. Genes 11:650

    Article  CAS  PubMed Central  Google Scholar 

  • Perdomo JA, Capó-Bauçà S, Carmo-Silva E, Galmés J (2017) Rubisco and rubisco activase play an important role in the biochemical limitations of photosynthesis in rice, wheat, and maize under high temperature and water deficit. Front Plant Sci 8:490

    Article  PubMed  PubMed Central  Google Scholar 

  • Pistelli L, Tonelli M, Pellegrini E, Cotrozzi L, Pucciariello C, Trivellini A et al (2019) Accumulation of rosmarinic acid and behaviour of ROS processing systems in Melissaofficinalis L. under heat stress. Ind Crops Prod 138:111469

    Article  CAS  Google Scholar 

  • Pospíšil P (2016) Production of reactive oxygen species by photosystem II as a response to light and temperature stress. Front Plant Sci 7:1950

    Article  PubMed  PubMed Central  Google Scholar 

  • Prerostova S, Dobrev PI, Kramna B, Gaudinova A, Knirsch V, Spichal L et al (2020) Heat acclimation and inhibition of cytokinin degradation positively affect heat stress tolerance of Arabidopsis. Front Plant Sci 11:87

    Article  PubMed  PubMed Central  Google Scholar 

  • Pucciariello C, Banti V, Perata P (2012) ROS signaling as common element in low oxygen and heat stresses. Plant Physiol Biochem 59:3–10

    Article  CAS  PubMed  Google Scholar 

  • Rickey TM, Belknap WR (1991) Comparison of the expression of several stress-responsive genes in potato tubers. Plant Mol Biol 16:1009–1018

    Article  CAS  PubMed  Google Scholar 

  • Riyazuddin R, Verma R, Singh K, Nisha N, Keisham M, Bhati KK et al (2020) Ethylene: a master regulator of salinity stress tolerance in plants. Biomolecules 10:959

    Article  CAS  PubMed Central  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, Prado FE (2009) Soluble sugars: metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal Behav 4:388–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan YL, Jin Y, Yang YJ, Li GJ, Boyer JS (2010) Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant 3:942–955

    Article  CAS  PubMed  Google Scholar 

  • Ruocco M, De Luca P, Marín-Guirao L, Procaccini G (2019) Differential leaf age-dependent thermal plasticity in the keystone seagrass Posidonia oceanica. Front Plant Sci 10:1556

    Article  PubMed  PubMed Central  Google Scholar 

  • Salman A, Filgueiras H, Cristescu S, Lopez-Lauri F, Harren F, Sallanon H (2009) Inhibition of wound-induced ethylene does not prevent red discoloration in fresh-cut endive (Cichorium intybus L.). Eur Food Res Technol 228:651–657

    Article  CAS  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Planta 120:179–186

    Article  CAS  Google Scholar 

  • Sami F, Yusuf M, Faizan M, Faraz A, Hayat S (2016) Role of sugars under abiotic stress. Plant Physiol Biochem 109:54–61

    Article  CAS  PubMed  Google Scholar 

  • Santisree P, Bhatnagar-Mathur P, Sharma KK (2017) Heat responsive proteome changes reveal molecular mechanisms underlying heat tolerance in chickpea. Environ Exp Bot 141:132–144

    Article  Google Scholar 

  • Sauter KJ, Davis DW, Li PH, Wallerstein IS (1990) Leaf ethylene evolution level following high-temperature stress in common bean. Hort Sci 25:1282–1284

    CAS  Google Scholar 

  • Savada RP, Ozga JA, Jayasinghege CPA, Waduthanthri KD, Reinecke DM (2017) Heat stress differentially modifies ethylene biosynthesis and signaling in pea floral and fruit tissues. Plant Mol Biol 95:313–331

    Article  CAS  PubMed  Google Scholar 

  • Schauberger B, Archontoulis S, Arneth A et al (2017) Consistent negative response of US crops to high temperatures in observations and crop models. Nat Commun. https://doi.org/10.1038/ncomms13931

    Article  PubMed  PubMed Central  Google Scholar 

  • Schrader SM, Wise RR, Wacholtz WF, Ort DR, Sharkey TD (2004) Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. Plant Cell Environ 27:725–735

    Article  CAS  Google Scholar 

  • Sewelam N, Kazan K, Thomas-Hall SR, Kidd BN, Manners JM, Schenk PM (2013) Ethylene response factor 6 is a regulator of reactive oxygen species signaling in Arabidopsis. PLoS ONE 8:e70289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharkey TD (2005) Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ 28:269–277

    Article  CAS  Google Scholar 

  • Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS et al (2019) Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9:285

    Article  CAS  PubMed Central  Google Scholar 

  • Shemer TA, Harpaz-Saad S, Belausov E, Lovat N, Krokhin O, Spicer V et al (2008) Citrus chlorophyllase dynamics at ethylene-induced fruit color-break: a study of chlorophyllase expression, posttranslational processing kinetics, and in situ intracellular localization. Plant Physiol 148:108–118

    Article  CAS  Google Scholar 

  • Snider JL, Oosterhuis DM, Loka DA, Kawakami EM (2011) High temperature limits in vivo pollen tube growth rates by altering diurnal carbohydrate balance in field-grown Gossypium hirsutum pistils. J Plant Physiol 168:1168–1175

    Article  CAS  PubMed  Google Scholar 

  • Song L, Jiang Y, Zhao H, Hou M (2012) Acquired thermotolerance in plants. Plant Cell Tissue Organ Cult 111:265–276

    Article  CAS  Google Scholar 

  • Steed CL, Harrison MA (1993) Regulation of ethylene biosynthesis after short-term heat treatment in etiolated pea stems. Physiol Plant 87:103–107

    Article  CAS  Google Scholar 

  • Sun Y, Geng Q, Du Y, Yang X, Zhai H (2017) Induction of cyclic electron flow around photosystem I during heat stress in grape leaves. Plant Sci 256:65–71

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Jing Y, Liu X et al (2020) Heat stress-induced transposon activation correlates with 3D chromatin organization rearrangement in Arabidopsis. Nat Commun 11:1886. https://doi.org/10.1038/s41467-020-15809-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Koussevitzky SHAI, Mittler RON, Miller GAD (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Bassil E, Hamilton JS, Inupakutika MA, Zandalinas SI, Tripathy D et al (2016) ABA is required for plant acclimation to a combination of salt and heat stress. PLoS ONE 11:e0147625

    Article  PubMed  PubMed Central  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Takács Z, Poór P, Borbély P, Czékus Z, Szalai G, Tari I (2018) H2O2 homeostasis in wild-type and ethylene-insensitive Never ripe tomato in response to salicylic acid treatment in normal photoperiod and in prolonged darkness. Plant Physiol Biochem 126:74–85

    Article  PubMed  Google Scholar 

  • Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53–60

    Article  CAS  PubMed  Google Scholar 

  • Tan W, Wei Meng Q, Brestic M, Olsovska K, Yang X (2011) Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. J Plant Physiol 168:2063–2071

    Article  CAS  PubMed  Google Scholar 

  • Tan SL, Yang YJ, Liu T, Zhang SB, Huang W (2020) Responses of photosystem I compared with photosystem II to combination of heat stress and fluctuating light in tobacco leaves. Plant Sci 292:110371

    Article  CAS  PubMed  Google Scholar 

  • Taylor GE, Gunderson CA (1986) The response of foliar gas exchange to exogenously applied ethylene. Plant Physiol 82:653–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thao NP, Khan MIR, Thu NB, Hoang XL, Asgher M, Khan NA, Tran LS (2015) Role of ethylene and its cross talk with other signaling molecules in plant responses to heavy metal stress. Plant Physiol 169:73–84

  • Tholen D, Pons TL, Voesenek LA, Poorter H (2007) Ethylene insensitivity results in down-regulation of Rubisco expression and photosynthetic capacity in tobacco. Plant Physiol 144:1305–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari S, Lata C, Singh CP, Prasad V, Prasad M (2017) A functional genomic perspective on drought signalling and its crosstalk with phytohormone-mediated signalling pathways in plants. Curr Genomics 18:469–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres CA, Sepulveda G, Kahlaoui B (2017) Phytohormone interaction modulating fruit responses to photooxidative and heat stress on apple (Malusdomestica Borkh.). Front Plant Sci 8:2129

    Article  PubMed  PubMed Central  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    Article  CAS  Google Scholar 

  • Vacca RA, de Pinto MC, Valenti D, Passarella S, Marra E, De Gara L (2004) Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco Bright-Yellow 2 cells. Plant Physiol 134:1100–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valluru R, Reynolds MP, Davies WJ, Sukumaran S (2017) Phenotypic and genome-wide association analysis of spike ethylene in diverse wheat genotypes under heat stress. New Phytol 214:271–283

    Article  CAS  PubMed  Google Scholar 

  • Van Aken O, Van Breusegem F (2015) Licensed to kill: mitochondria, chloroplasts, and cell death. Trends Plant Sci 20:754–766

    Article  PubMed  Google Scholar 

  • Vongs A, Kakutani T, Martienssen RA, Richards EJ (1993) Arabidopsis thaliana DNA methylation mutants. Sci 260:1926–1928

    Article  CAS  Google Scholar 

  • Wahid A, Shabbir A (2005) Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Plant Growth Regul 46:133–141

    Article  CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang H, Liang X, Wan Q, Wang X, Bi Y (2009) Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress. Planta 230:293–307

    Article  CAS  PubMed  Google Scholar 

  • Wang GP, Hui Z, Li F, Zhao MR, Zhang J, Wang W (2010) Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine. Plant Biotechnol Rep 4:213–222

    Article  Google Scholar 

  • Wang Y, Liu S, Zhang H, Zhao Y, Zhao H, Liu H (2014) Glycine betaine application in grain filling wheat plants alleviates heat and high light-induced photoinhibition by enhancing the psbA transcription and stomatal conductance. Acta Physiol Plant 36:2195–2202

    Article  CAS  Google Scholar 

  • Wang ZP, Xing HL, Dong L, Zhang HY, Han CY, Wang XC, Chen QJ (2015) Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol 16:144

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang QL, Chen JH, He NY, Guo FQ (2018) Metabolic reprogramming in chloroplasts under heat stress in plants. Int J Mol Sci 19:849

    Article  PubMed Central  Google Scholar 

  • Wi SJ, Jang SJ, Park KY (2010) Inhibition of biphasic ethylene production enhances tolerance to abiotic stress by reducing the accumulation of reactive oxygen species in Nicotiana tabacum. Mol cells 30:37–49

    Article  CAS  PubMed  Google Scholar 

  • Wind J, Smeekens S, Hanson J (2010) Sucrose: metabolite and signaling molecule. Phytochemistry 71:1610–1614

    Article  CAS  PubMed  Google Scholar 

  • Wingler A, Purdy S, MacLean JA, Pourtau N (2006) The role of sugars in integrating environmental signals during the regulation of leaf senescence. J Exp Bot 57:391–399

    Article  CAS  PubMed  Google Scholar 

  • Wingler A, Masclaux-Daubresse C, Fischer AM (2009) Sugars, senescence, and ageing in plants and heterotrophic organisms. J Exp Bot 60:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Wu YS, Yang CY (2019) Ethylene-mediated signaling confers thermotolerance and regulates transcript levels of heat shock factors in rice seedlings under heat stress. Bot Stud 60:1–12. https://doi.org/10.1186/s40529-019-0272-z

    Article  CAS  Google Scholar 

  • Wu L, Zhang Z, Zhang H, Wang XC, Huang R (2008) Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol 148:1953–1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66:2839–2856

    Article  CAS  PubMed  Google Scholar 

  • Xiao W, Custard RD, Brown RC, Lemmon BE, Harada JJ, Goldberg RB, Fischer RL (2006) DNA methylation is critical for Arabidopsis embroyogenesis and seed viability. Plant Cell 18:805–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Huang B (2007) Heat-induced leaf senescence and hormonal changes for thermal bentgrass and turf-type bentgrass species differing in heat tolerance. J Am Soc Hort Sci 132:185–192

    Article  CAS  Google Scholar 

  • Xu Y, Huang B (2009) Effects of foliar-applied ethylene inhibitor and synthetic cytokinin on creeping bentgrass to enhance heat tolerance. Crop Sci 49:1876–1884

    Article  CAS  Google Scholar 

  • Xu S, Li J, Zhang X, Wei H, Cui J (2006) Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ Exp Bot 56:274–285

    Article  CAS  Google Scholar 

  • Xu C, Xia Z, Huang Z, Xia C, Huang J, Zha M et al (2019) Understanding the physiological and transcriptional mechanism of reproductive stage soybean in response to heat stress. Crop Breed Genet Genom 2:e200004

    Google Scholar 

  • Yamori W, von Caemmerer S (2009) Effect of Rubisco activase deficiency on the temperature response of CO2 assimilation rate and Rubisco activation state: insights from transgenic tobacco with reduced amounts of Rubisco activase. Plant Physiol 151:2073–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Chen X, Ge Q, Li B, Tong Y, Zhang A et al (2006) Tolerance of photosynthesis to photoinhibition, high temperature and drought stress in flag leaves of wheat: a comparison between a hybridization line and its parents grown under field conditions. Plant Sci 171:389–397

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Wen X, Gong H, Lu Q, Yang Z, Tang Y et al (2007) Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta 225:719–733

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Sun Y, Chen S, Jiang J, Chen F, Fang W, Liu Z (2011) The effect of exogenously applied nitric oxide on photosynthesis and antioxidant activity in heat stressed chrysanthemum. Biol Plant 55:737

    Article  CAS  Google Scholar 

  • Yoshida T, Ohama N, Nakajima J et al (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Genet Genomics 286:321–332

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka M, Uchida S, Mori H, Komayama K, Ohira S, Morita N et al (2006) Quality control of photosystem II cleavage of reaction center D1 protein in spinach thylakoids by FtsH protease under moderate heat stress. J Biol Chem 281:21660–21669

    Article  CAS  PubMed  Google Scholar 

  • Young TE, Meeley RB, Gallie DR (2004) ACC synthase expression regulates leaf performance and drought tolerance in maize. Plant J 40:813–825

    Article  CAS  PubMed  Google Scholar 

  • Yuan C, Cothren JT, De-hua C, Ibrahim AMH, Lombardini L (2015) Ethylene-inhibiting compound 1-MCP delays leaf senescence in cotton plants under abiotic stress conditions. J Integr Agric 14:1321–1331

    Article  Google Scholar 

  • Yuan L, Yuan Y, Liu S, Wang J, Zhu S, Chen G et al (2017) Influence of high temperature on photosynthesis, antioxidative capacity of chloroplast, and carbon assimilation among heat-tolerant and heat-susceptible genotypes of nonheading Chinese cabbage. Hort Sci 52:1464–1470

    CAS  Google Scholar 

  • Zemach A, Kim MY, Hsieh PH, Coleman-Derr D, Eshed-Williams L, Thao K et al (2013) The arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153:193–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Jacobsen SE (2006) Genetic analyses of DNA methyltransferases in Arabidopsis thaliana. Cold Spring Harb Symp Quant Biol 71:439447

    Article  Google Scholar 

  • Zhang R, Sharkey TD (2009) Photosynthetic electron transport and proton flux under moderate heat stress. Photosynth Res 100:29–43

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot 60:3781–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhang Z, Li J, Wu L, Guo J, Ouyang L et al (2011) Correlation of leaf senescence and gene expression/activities of chlorophyll degradation enzymes in harvested Chinese flowering cabbage (Brassica rapa var. parachinensis). J Plant Physiol 168:2081–2087

    Article  CAS  PubMed  Google Scholar 

  • Zhang JL, Poorter L, Hao GY, Cao KF (2012) Photosynthetic thermotolerance of woody savanna species in China is correlated with leaf life span. Ann Bot 110:1027–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Lang Z, Zhu JK (2018) Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol 19:489–506

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Xing J, Lu Q, Yu G, Xu B, Huang B (2019) Transcriptional regulation of chlorophyll-catabolic genes associated with exogenous chemical effects and genotypic variations in heat-induced leaf senescence for perennial ryegrass. Environ Exp Bot 167:103858

    Article  CAS  Google Scholar 

  • Zhang X, Wu C, Hu C, Li Y, Sun X, Xu N (2020) Lipid remodeling associated with chitooligosaccharides-induced heat tolerance of marine macroalgae Gracilariopsis lemaneiformis. Algal Res 52:102113

    Article  Google Scholar 

  • Zhao F, Zhang D, Zhao Y, Wang W, Yang H, Tai F et al (2016) The difference of physiological and proteomic changes in maize leaves adaptation to drought, heat, and combined both stresses. Front Plant Sci 7:1471

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng G, Tian BO, Zhang F, Tao F, Li W (2011) Plant adaptation to frequent alterations between high and low temperatures: remodelling of membrane lipids and maintenance of unsaturation levels. Plant Cell Environ 34:1431–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Yu Z, Peng X, Wang C (2020) Endogenous ascorbic acid delays ethylene-induced leaf senescence in Arabidopsis thaliana. Photosynthetica 58:720–731

    Article  CAS  Google Scholar 

  • Zhou W, Leul M (1999) Uniconazole-induced tolerance of rape plants to heat stress in relation to changes in hormonal levels, enzyme activities and lipid peroxidation. Plant Growth Regul 27:99–104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MIRK is gratefully acknowledging the UGC start up grant (No. F. 30-482/2019 (BSR)) and SERB-DST grant (SRG/2020/001004). PP is gratefully acknowledging support from NKFIH FK 124871.

Author information

Authors and Affiliations

Authors

Contributions

MIRK conceived the idea and designed the concept. The manuscript was prepared with the potential contribution of PP, KN, RG, FA, and MIRK. All authors have read and approved the manuscript.

Corresponding author

Correspondence to M. Iqbal R. Khan.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Communicated by M. Nasir Khan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Supplementary file2 (XLSX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poór, P., Nawaz, K., Gupta, R. et al. Ethylene involvement in the regulation of heat stress tolerance in plants. Plant Cell Rep 41, 675–698 (2022). https://doi.org/10.1007/s00299-021-02675-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-021-02675-8

Keywords

Navigation