Regulation of pri-MIRNA processing: mechanistic insights into the miRNA homeostasis in plant

Abstract

miRNAs in plant plays crucial role in controlling proper growth, development and fitness by modulating the expression of their target genes. Therefore to modulate the expression of any stress/development related gene specifically, it is better to modulate expression of the miRNA that can target that gene. To modulate the expression level of miRNA, it is prerequisite to uncover the underlying molecular mechanism of its biogenesis. The biogenesis pathway consists of two major steps, transcription of MIR gene to pri-MIRNA and processing of pri-MIRNA into mature miRNA via sequential cleavage steps. Both of these pathways are tightly controlled by several different factors involving structural and functional molecules. This review is mainly focused on different aspects of pri-MIRNA processing mechanism to emphasize on the fact that to modulate the level of a miRNA in the cell only over-expression or knock-down of that MIR gene is not always sufficient rather it is also crucial to take processing regulation into consideration. The data collected from the recent and relevant literatures depicts that processing regulation is controlled by several aspects like structure and size of the pri-MIRNA, presence of introns in MIR gene and their location, interaction of processing factors with the core components of processing machinery etc. These detailed information can be utilized to figure out the particular point which can be utilized to modulate the expression of the miRNA which would ultimately be beneficial for the scientist and researcher working in this field to generate protocol for engineering plant with improved yield and stress tolerance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

miRNA:

MicroRNA

pri-MIRNA :

Primary microRNA

DCL1:

Dicer like 1

RISC:

RNA-induced silencing complex

CBC:

cap-binding complex

SE:

Serrate

HYL1:

Hyponastic leaves 1

DDL:

Dawdle

TGH:

TOUGH

HEN1:

HUA ENHANCER1

HST:

HASTY

AGO1:

ARGONAUTE

hnRNPs:

Heterogeneous nuclear ribonucleoproteins

XCT:

XAP5 CIRCADIAN TIMEKEEPER

RACK1:

RECEPTOR FOR ACTIVATED C KINASE 1

RCF3:

REGULATOR OF CBF GENE EXPRESSION 3

PP4:

Protein Phosphatase 4

MAC:

MOS4-Associated Complex

SIC:

SICKLE

STA1:

STABILIZED1

HOS5:

HIGH OSMOTIC STRESS GENE EXPRESSION 5

DOG1:

DELAY OF GERMINATION1

EMU:

ERECTA mRNA UNDER-EXPRESSED

MTA:

MRNA adenosine methylase

HESO1:

HEN1 SUPPRESSOR 1

SDN1:

SMALL-RNA-DEGRADING NUCLEASES

EMA1:

ENHANCED miRNA ACTIVITY1

TRN1:

TRANSPORTIN1

References

  1. Achkar NP, Cho SK, Poulsen C, Arce AL, Re DA, Giudicatti AJ et al (2018) A Quick HYL1-dependent reactivation of MicroRNA production is required for a proper developmental response after extended periods of light deprivation. Dev Cell 46:236–247. https://doi.org/10.1016/j.devcel.2018.06.014

    CAS  Article  PubMed  Google Scholar 

  2. Addo-Quaye C, Snyder JA, Park YB, Li YF, Sunkar R, Axtell MJ (2009) Sliced microRNA targets and precise loop-first processing of MIR319 hairpins revealed by analysis of the Physcomitrella patens degradome. RNA 15:2112–2121. https://doi.org/10.1261/rna.1774909

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Bai M, Yang GS, Chen WT, Mao ZC, Kang HX, Chen GH, Yang YH, Xie BY (2012) Genome-wide identification of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families and their expression analyses in response to viral infection and abiotic stresses in Solanum lycopersicum. Gene 501:52–62. https://doi.org/10.1016/j.gene.2012.02.009

    CAS  Article  PubMed  Google Scholar 

  4. Bajczyk M, Lange H, Bielewicz D, Szewc L, Bhat SS, Dolata J, Kuhn L, Szweykowska-Kulinska Z, Gagliardi D, Jarmolowski A (2020) SERRATE interacts with the nuclear exosome targeting (NEXT) complex to degrade primary miRNA precursors in Arabidopsis. Nucleic Acids Res 48:6839–6854. https://doi.org/10.1093/nar/gkaa373

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Baranauskė S, Mickutė M, Plotnikova A, Finke A, Venclovas Č, Klimašauskas S, Vilkaitis G (2015) Functional mapping of the plant small RNA methyltransferase: HEN1 physically interacts with HYL1 and DICER-LIKE 1 proteins. Nucleic Acids Res 43:2802–2812. https://doi.org/10.1093/nar/gkv102

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Basso MF, Ferreira PC, Kobayashi AK, Harmon FG, Nepomuceno AL, Molinari HB, Grossi-de-Sa MF (2019) Micro RNA s and new biotechnological tools for its modulation and improving stress tolerance in plants. Plant Biotechnol J 17(8):1482–1500. https://doi.org/10.1111/pbi.13116

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Ben Chaabane S, Liu R, Chinnusamy V, Kwon Y, Park JH, Kim SY, Zhu JK, Yang SW, Lee BH (2013) STA1, an Arabidopsis pre-mRNA processing factor 6 homolog, is a new player involved in miRNA biogenesis. Nucleic Acids Res 41:1984–1997. https://doi.org/10.1093/nar/gks1309

    CAS  Article  PubMed  Google Scholar 

  8. Bhat SS, Bielewicz D, Grzelak N, Gulanicz T, Bodi Z, Szewc L, Bajczyk M, Dolata J, Smolinski D, Fray RG, Jarmolowski A (2019) mRNA adenosine methylase (MTA) deposits m6A on pri-miRNAs to modulate miRNA biogenesis in Arabidopsis thaliana. bioRxiv. https://doi.org/10.1073/pnas.2003733117

    Article  Google Scholar 

  9. Bielewicz D, Kalak M, Kalyna M, Windels D, Barta A, Vazquez F, Szweykowska-Kulinska Z, Jarmolowski A (2013) Introns of plant pri-miRNAs enhance miRNA biogenesis. EMBO Rep 14:622–628. https://doi.org/10.1038/embor.2013.62

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Bologna NG, Mateos JL, Bresso EG, Palatnik JF (2009) A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. EMBO J 28:3646–3656. https://doi.org/10.1038/emboj.2009.292

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Bologna NG, Schapire AL, Palatnik JF (2013a) Processing of plant microRNA precursors. Brief Funct Genomics 12:37–45. https://doi.org/10.1093/bfgp/els050

    CAS  Article  PubMed  Google Scholar 

  12. Bologna NG, Schapire AL, Zhai J, Chorostecki U, Boisbouvier J, Meyers BC, Palatnik JF (2013b) Multiple RNA recognition patterns during microRNA biogenesis in plants. Genome Res 23:1675–1689. https://doi.org/10.1101/gr.153387.112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Bologna NG, Iselin R, Abriata LA, Sarazin A, Pumplin N, Jay F, Grentzinger T, Dal Peraro M, Voinnet O (2018) Nucleo-cytosolic Shuttling of ARGONAUTE1 prompts a revised model of the plant MicroRNA Pathway. Mol Cell 69:709–719. https://doi.org/10.1016/j.molcel.2018.01.007

    CAS  Article  PubMed  Google Scholar 

  14. Bouché N, Lauressergues D, Gasciolli V, Vaucheret H (2006) An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 25:3347–3356. https://doi.org/10.1038/sj.emboj.7601217

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Budak H, Akpinar BA (2015) Plant miRNAs: biogenesis, organization and origins. Funct Integr Genomics 15:523–531. https://doi.org/10.1007/s10142-015-0451-2

    CAS  Article  PubMed  Google Scholar 

  16. Calderon-Villalobos LI, Kuhnle C, Dohmann EM, Li H, Bevan M, Schwechheimer C (2005) The evolutionarily conserved TOUGH protein is required for proper development of Arabidopsis thaliana. Plant Cell 17:2473–2485. https://doi.org/10.1105/tpc.105.031302

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Carbonell A, Fahlgren N, Garcia-Ruiz H, Gilbert KB, Montgomery TA, Nguyen T, Cuperus JT, Carrington JC (2012) Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants. Plant Cell 24:3613–3629. https://doi.org/10.1105/tpc.112.099945

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Chand SK, Nanda S, Mishra R, Joshi RK (2017) Multiple garlic (Allium sativum L.) microRNAs regulate the immunity against the basal rot fungus Fusarium oxysporum f. sp. Cepae. Plant Sci 257:9–21. https://doi.org/10.1016/j.plantsci.2017.01.007

    CAS  Article  PubMed  Google Scholar 

  19. Chen L, Luan Y, Zhai J (2015a) Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco. Plant Cell Rep 34:2013–2025. https://doi.org/10.1007/s00299-015-1847-0

    CAS  Article  PubMed  Google Scholar 

  20. Chen T, Cui P, Xiong L (2015b) The RNA-binding protein HOS5 and serine/arginine-rich proteins RS40 and RS41 participate in miRNA biogenesis in Arabidopsis. Nucleic Acids Res 43:8283–8298. https://doi.org/10.1093/nar/gkv751

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Chen J, Liu L, You C, Gu J, Ruan W, Zhang L, Gan J, Cao C, Huang Y, Chen X, Ma J (2018) Structural and biochemical insights into small RNA 3′ end trimming by Arabidopsis SDN1. Nat Commun 9:3585. https://doi.org/10.1038/s41467-018-05942-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Cho SK, Chaabane SB, Shah P, Poulsen CP, Yang SW (2014) COP1 E3 ligase protects HYL1 to retain microRNA biogenesis. Nat Commun 5:5867. https://doi.org/10.1038/ncomms6867

    CAS  Article  PubMed  Google Scholar 

  23. Cho SK, Ryu MY, Poulsen C, Kim JH, Oh TR, Choi SW, Kim M, Yang JY, Boo KH, Geshi N, Kim WT (2017) HIGLE is a bifunctional homing endonuclease that directly interacts with HYL1 and SERRATE in Arabidopsis thaliana. FEBS Lett 591:1383–1393. https://doi.org/10.1002/1873-3468.12628

    CAS  Article  PubMed  Google Scholar 

  24. Chorostecki U, Moro B, Rojas AM, Debernardi JM, Schapire AL, Notredame C, Palatnik JF (2017) Evolutionary footprints reveal insights into plant microRNA biogenesis. Plant Cell 29:1248–1261. https://doi.org/10.1105/tpc.17.00272

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Cui Y, Fang X, Qi Y (2016) TRANSPORTIN1 promotes the association of MicroRNA with ARGONAUTE1 in Arabidopsis. Plant Cell 28:2576–2585. https://doi.org/10.1105/tpc.16.00384

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Cui X, Yan Q, Gan S, Xue D, Dou D, Guo N, Xing H (2017) Overexpression of gma-miR1510a/b suppresses the expression of a NB-LRR domain gene and reduces resistance to Phytophthora sojae. Gene 621:32–39. https://doi.org/10.1016/j.gene.2017.04.015

    CAS  Article  PubMed  Google Scholar 

  27. Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA (2017) Functional roles of microRNAs in agronomically important plants—potential as targets for crop improvement and protection. Front Plant Sci 22(8):378. https://doi.org/10.3389/fpls.2017.00378

    Article  Google Scholar 

  28. Dolata J, Bajczyk M, Bielewicz D, Niedojadlo K, Niedojadlo J, Pietrykowska H, Walczak W, Szweykowska-Kulinska Z, Jarmolowski A (2016) Salt stress reveals a new role for ARGONAUTE1 in miRNA biogenesis at the transcriptional and posttranscriptional levels. Plant Physiol 172:297–312. https://doi.org/10.1104/pp.16.00830

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Drusin SI, Suarez IP, Gauto DF, Rasia RM, Moreno DM (2016) dsRNA–protein interactions studied by molecular dynamics techniques. Unravelling dsRNA recognition by DCL1. Arch Biochem Biophys 596:118–125. https://doi.org/10.1016/j.abb.2016.03.013

    CAS  Article  PubMed  Google Scholar 

  30. Fang Y, Spector DL (2007) Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr Biol 17:818–823. https://doi.org/10.1016/j.cub.2007.04.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Fang X, Cui Y, Li Y, Qi Y (2015a) Transcription and processing of primary microRNAs are coupled by Elongator complex in Arabidopsis. Nat Plants 1:15075. https://doi.org/10.1038/nplants.2015.75

    CAS  Article  PubMed  Google Scholar 

  32. Fang X, Shi Y, Lu X, Chen Z, Qi Y (2015b) CMA33/XCT Regulates small RNA production through modulating the transcription of dicer-like genes in Arabidopsis. Mol Plant 8:1227–1236. https://doi.org/10.1016/j.molp.2015.03.002

    CAS  Article  PubMed  Google Scholar 

  33. Finnegan EJ, Matzke MA (2003) The small RNA world. J Cell Sci 116:4689–4693. https://doi.org/10.1242/jcs.00838

    CAS  Article  PubMed  Google Scholar 

  34. Francisco-Mangilet AG, Karlsson P, Kim MH, Eo HJ, Oh SA, Kim JH, Kulcheski FR, Park SK, Manavella PA (2015) THO2, a core member of the THO/TREX complex, is required for microRNA production in Arabidopsis. Plant J 82:1018–1029. https://doi.org/10.1111/tpj.12874

    CAS  Article  PubMed  Google Scholar 

  35. Fujioka Y, Utsumi M, Ohba Y, Watanabe Y (2007) Location of a possible miRNA processing site in SmD3/SmB nuclear bodies in Arabidopsis. Plant Cell Physiol 48:1243–1253. https://doi.org/10.1093/pcp/pcm099

    CAS  Article  PubMed  Google Scholar 

  36. Fukudome A, Fukuhara T (2017) Plant dicer-like proteins: double-stranded RNA-cleaving enzymes for small RNA biogenesis. J Plant Res 130:33–44. https://doi.org/10.1007/s10265-016-0877-1

    CAS  Article  PubMed  Google Scholar 

  37. Furumizu C, Tsukaya H, Komeda Y (2010) Characterization of EMU, the Arabidopsis homolog of the yeast THO complex member HPR1. RNA 16:1809–1817. https://doi.org/10.1261/rna.2265710

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Gao S, Wang J, Jiang N, Zhang S, Wang Y, Zhang J, Li N, Fang Y, Yang L, Chen S, Yan B (2020) Hyponastic Leaves 1 protects pri-miRNAs from nuclear exosome attack. Proc Natl Acad Sci USA 117:17429–17437. https://doi.org/10.1073/pnas.2007203117

    CAS  Article  PubMed  Google Scholar 

  39. Guil S, Cáceres JF (2007) The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat Struct Mol Biol 14:591–596. https://doi.org/10.1038/nsmb1250

    CAS  Article  PubMed  Google Scholar 

  40. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524. https://doi.org/10.1038/nrm3838

    CAS  Article  Google Scholar 

  41. Huang J, Yang M, Zhang X (2016) The function of small RNAs in plant biotic stress response. J Integr Plant Biol 58:312–327. https://doi.org/10.1111/jipb.12463

    CAS  Article  PubMed  Google Scholar 

  42. Huo H, Wei S, Bradford KJ (2016) DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways. Proc Natl Acad Sci USA 113:2199–2206. https://doi.org/10.1073/pnas.1600558113

    CAS  Article  Google Scholar 

  43. Jagtap S, Shivaprasad PV (2014) Diversity, expression and mRNA targeting abilities of Argonaute-targeting miRNAs among selected vascular plants. BMC Genom 15:1–14. https://doi.org/10.1186/1471-2164-15-1049

    CAS  Article  Google Scholar 

  44. Jia T, Zhang B, You C, Zhang Y, Zeng L, Li S, Johnson KC, Yu B, Li X, Chen X (2017) The Arabidopsis MOS4-associated complex promotes microRNA biogenesis and precursor messenger RNA splicing. Plant Cell 29:2626–2643. https://doi.org/10.1105/tpc.17.00370

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Jodder J, Basak S, Das R, Kundu P (2017) Coherent regulation of miR167a biogenesis and expression of auxin signaling pathway genes during bacterial stress in tomato. Physiol Mol Plant Pathol 100:97–105. https://doi.org/10.1016/j.pmpp.2017.08.001

    CAS  Article  Google Scholar 

  46. Jodder J, Das R, Sarkar D, Bhattacharjee P, Kundu P (2018) Distinct transcriptional and processing regulations control miR167a level in tomato during stress. RNA Biol 15:130–143. https://doi.org/10.1080/15476286.2017.1391438

    Article  PubMed  Google Scholar 

  47. Karlsson P, Christie MD, Seymour DK, Wang H, Wang X, Hagmann J, Kulcheski F, Manavella PA (2015) KH domain protein RCF3 is a tissue-biased regulator of the plant miRNA biogenesis cofactor HYL1. Proc Natl Acad Sci USA 112:14096–14101. https://doi.org/10.1073/pnas.1512865112

    CAS  Article  PubMed  Google Scholar 

  48. Kim S, Yang JY, Xu J, Jang IC, Prigge MJ, Chua NH (2008) Two cap-binding proteins CBP20 and CBP80 are involved in processing primary MicroRNAs. Plant Cell Physiol 49:1634–1644. https://doi.org/10.1093/pcp/pcn146

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Kim W, Benhamed M, Servet C, Latrasse D, Zhang W, Delarue M, Zhou DX (2009) Histone acetyltransferase GCN5 interferes with the miRNA pathway in Arabidopsis. Cell Res 19:899–909. https://doi.org/10.1038/cr.2009.59

    CAS  Article  PubMed  Google Scholar 

  50. Kim W, Jun AR, Ahn JH (2016a) Proximal disruption of base pairing of the second stem in the upper stem of pri-miR156a caused ambient temperature-sensitive flowering in Arabidopsis. Plant Signal Behav 11:e1226455. https://doi.org/10.1080/15592324.2016.1226455

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Kim W, Kim HE, Jun AR, Jung MG, Jin S, Lee JH, Ahn JH (2016b) Structural determinants of miR156a precursor processing in temperature-responsive flowering in Arabidopsis. J Exp Bot 67:4659–4670. https://doi.org/10.1093/jxb/erw248

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Kim HE, Kim W, Lee AR, Jin S, Jun AR, Kim NK, Lee JH, Ahn JH (2017a) Base-pair opening dynamics of the microRNA precursor pri-miR156a affect temperature-responsive flowering in Arabidopsis. Biochem Biophys Res Commun. 484:839–844. https://doi.org/10.1016/j.bbrc.2017.01.185

    CAS  Article  PubMed  Google Scholar 

  53. Kim W, Kim HE, Lee AR, Jun AR, Jung MG, Ahn JH, Lee JH (2017b) Base-pair opening dynamics of primary miR156a using NMR elucidates structural determinants important for its processing level and leaf number phenotype in Arabidopsis. Nucleic Acids Res 45:875–885. https://doi.org/10.1093/nar/gkw747

    CAS  Article  PubMed  Google Scholar 

  54. Köster T, Meyer K, Weinholdt C, Smith LM, Lummer M, Speth C, Grosse I, Weigel D, Staiger D (2014) Regulation of pri-miRNA processing by the hnRNP-like protein AtGRP7 in Arabidopsis. Nucleic Acids Res 42:9925–9936. https://doi.org/10.1093/nar/gku716

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Kurihara Y, Takashi Y, Watanabe Y (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12:206–212. https://doi.org/10.1261/rna.2146906

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Laubinger S, Sachsenberg T, Zeller G, Busch W, Lohmann JU, Rätsch G, Weigel D (2008) Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana. Proc Natl Acad Sci USA 105:8795–8800. https://doi.org/10.1073/pnas.0802493105

    Article  PubMed  Google Scholar 

  57. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060. https://doi.org/10.1038/sj.emboj.7600385

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Lee WC, Lu SH, Lu MH, Yang CJ, Wu SH, Chen HM (2015) Asymmetric bulges and mismatches determine 20-nt microRNA formation in plants. RNA Biol 12:1054–1066. https://doi.org/10.1080/15476286.2015.1079682

    Article  PubMed  PubMed Central  Google Scholar 

  59. Li J, Yang Z, Yu B, Liu J, Chen X (2005) Methylation protects miRNAs and siRNAs from a 3’-end uridylation activity in Arabidopsis. Curr Biol 15:1501–1507. https://doi.org/10.1016/j.cub.2005.07.029

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Li Z, Wang S, Cheng J, Su C, Zhong S, Liu Q, Fang Y, Yu Y, Lv H, Zheng Y, Zheng B (2016) Intron Lariat RNA Inhibits MicroRNA Biogenesis by Sequestering the Dicing Complex in Arabidopsis. PLoS Genet 12:e1006422. https://doi.org/10.1371/journal.pgen.1006422

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Li S, Liu K, Zhang S, Wang X, Rogers K, Ren G, Zhang C, Yu B (2017) STV1, a ribosomal protein, binds primary microRNA transcripts to promote their interaction with the processing complex in Arabidopsis. Proc Natl Acad Sci USA 114:1424–1429. https://doi.org/10.1073/pnas.1613069114

    CAS  Article  PubMed  Google Scholar 

  62. Li S, Liu K, Zhou B, Li M, Zhang S, Zeng L, Zhang C, Yu B (2018a) MAC3A and MAC3B, two core subunits of the MOS4-associated complex, positively influence miRNA biogenesis. Plant Cell 30:481–494. https://doi.org/10.1105/tpc.17.00953

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Li S, Xu R, Li A, Liu K, Gu L, Li M, Zhang H, Zhang Y, Zhuang S, Wang Q, Gao G (2018b) SMA1, a homolog of the splicing factor Prp28, has a multifaceted role in miRNA biogenesis in Arabidopsis. Nucleic Acids Res 46:9148–9159. https://doi.org/10.1093/nar/gky591

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Lin Z, Yin K, Zhu D, Chen Z, Gu H, Qu LJ (2007) AtCDC5 regulates the G2 to M transition of the cell cycle and is critical for the function of Arabidopsis shoot apical meristem. Cell Res 17:815–828. https://doi.org/10.1038/cr.2007.71

    CAS  Article  PubMed  Google Scholar 

  65. Liu N, Wu S, Van Houten J, Wang Y, Ding B, Fei Z, Clarke TH, Reed JW, Van Der Knaap E (2014) Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato. J Exp Bot 65:2507–2520. https://doi.org/10.1093/jxb/eru141

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Llave C, Kasschau KD, Rector MA, Carrington JC (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605–1619. https://doi.org/10.1105/tpc.003210

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Lobbes D, Rallapalli G, Schmidt DD, Martin C, Clarke J (2006) SERRATE: a new player on the plant microRNA scene. EMBO Rep 7:1052–1058. https://doi.org/10.1038/sj.embor.7400806

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Lowder LG, Paul JW, Qi Y (2017) Multiplexed transcriptional activation or repression in plants using CRISPR-dCas9-based systems. Methods Mol Biol 1629:167–184. https://doi.org/10.1007/978-1-4939-7125-1_12

    CAS  Article  PubMed  Google Scholar 

  69. Lu C, Fedoroff N (2000) A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12:2351–2366. https://doi.org/10.1105/tpc.12.12.2351

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Machida S, Yuan YA (2013) Crystal structure of Arabidopsis thaliana Dawdle forkhead-associated domain reveals a conserved phospho-threonine recognition cleft for dicer-like 1 binding. Mol Plant 6:1290–1300. https://doi.org/10.1093/mp/sst007

    CAS  Article  PubMed  Google Scholar 

  71. Machida S, Chen HY, Adam Yuan Y (2011) Molecular insights into miRNA processing by Arabidopsis thaliana SERRATE. Nucleic Acids Res 39:7828–7836. https://doi.org/10.1093/nar/gkr428

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Manavella PA, Hagmann J, Ott F, Laubinger S, Franz M, Macek B, Weigel D (2012) Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1. Cell 151:859–870. https://doi.org/10.1016/j.cell.2012.09.039

    CAS  Article  PubMed  Google Scholar 

  73. Mateos JL, Bologna NG, Chorostecki U, Palatnik JF (2010) Identification of microRNA processing determinants by random mutagenesis of Arabidopsis MIR172a precursor. Curr Biol 20:49–54. https://doi.org/10.1016/j.cub.2009.10.072

    CAS  Article  PubMed  Google Scholar 

  74. Narjala A, Nair A, Tirumalai V, Hari Sundar GV, Shivaprasad PV (2020) A conserved sequence signature is essential for robust plant miRNA biogenesis. Nucleic Acids Res 48:3103–3118. https://doi.org/10.1093/nar/gkaa077

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Pan J, Huang D, Guo Z, Kuang Z, Zhang H, Xie X, Ma Z, Gao S, Lerdau MT, Chu C, Li L (2018) Overexpression of microRNA408 enhances photosynthesis, growth, and seed yield in diverse plants. J Integr Plant Biol 60:323–340. https://doi.org/10.1111/jipb.12634

    CAS  Article  PubMed  Google Scholar 

  76. Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci USA 102:3691–3696. https://doi.org/10.1073/pnas.0405570102

    CAS  Article  PubMed  Google Scholar 

  77. Plotnikova A, Baranauskė S, Osipenko A, Klimašauskas S, Vilkaitis G (2013) Mechanistic insights into small RNA recognition and modification by the HEN1 methyltransferase. Biochem J 453:281–290. https://doi.org/10.1042/BJ20121699

    CAS  Article  PubMed  Google Scholar 

  78. Prigge MJ, Wagner DR (2001) The Arabidopsis serrate gene encodes a zinc-finger protein required for normal shoot development. Plant Cell 13:1263–1279. https://doi.org/10.1105/TPC.010095

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Raghuram B, Sheikh AH, Rustagi Y, Sinha AK (2015) MicroRNA biogenesis factor DRB1 is a phosphorylation target of mitogen activated protein kinase MPK3 in both rice and Arabidopsis. FEBS J 282:521–536. https://doi.org/10.1111/febs.13159

    CAS  Article  PubMed  Google Scholar 

  80. Ramachandran V, Chen X (2008) Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science 321:1490–1492. https://doi.org/10.1126/science.1163728

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626. https://doi.org/10.1101/gad.1004402

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Ren G, Chen X, Yu B (2012a) Uridylation of miRNAs by hen1 suppressor1 in Arabidopsis. Curr Biol 22:695–700. https://doi.org/10.1016/j.cub.2012.02.052

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Ren G, Xie M, Dou Y, Zhang S, Zhang C, Yu B (2012b) Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. Proc Natl Acad Sci USA 109:12817–12821. https://doi.org/10.1073/pnas.1204915109

    Article  PubMed  Google Scholar 

  84. Ren G, Xie M, Zhang S, Vinovskis C, Chen X, Yu B (2014) Methylation protects microRNAs from an AGO1-associated activity that uridylates 5’ RNA fragments generated by AGO1 cleavage. Proc Natl Acad Sci USA 111:6365–6370. https://doi.org/10.1073/pnas.1405083111

    CAS  Article  PubMed  Google Scholar 

  85. Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25:2383–2399. https://doi.org/10.1105/tpc.113.113159

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. Rojas AML, Drusin SI, Chorostecki U, Mateos JL, Moro B, Bologna NG, Bresso EG, Schapire A, Rasia RM, Moreno DM, Palatnik JF (2020) Identification of key sequence features required for microRNA biogenesis in plants. Nat Commun 11:1–11. https://doi.org/10.1038/s41467-020-19129-6

    CAS  Article  Google Scholar 

  87. Salvador-Guirao R, Baldrich P, Weigel D, Rubio-Somoza I, San Segundo B (2018) The microRNA miR773 is involved in the Arabidopsis immune response to fungal pathogens. Mol Plant–Microbe Interact 15 31(2):249–259. https://doi.org/10.1094/MPMI-05-17-0108-R

    CAS  Article  Google Scholar 

  88. Schwab R, Speth C, Laubinger S, Voinnet O (2013) Enhanced microRNA accumulation through stemloop-adjacent introns. EMBO Rep 14:615–621. https://doi.org/10.1038/embor.2013.58

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. Slezak-Prochazka I, Durmus S, Kroesen BJ, van den Berg A (2010) MicroRNAs, macrocontrol: regulation of miRNA processing. RNA 16:1087–1095. https://doi.org/10.1261/rna.1804410

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. Song L, Han MH, Lesicka J, Fedoroff N (2007) Arabidopsis primary microRNA processing proteins HYL1 and DCL1 define a nuclear body distinct from the Cajal body. Proc Natl Acad Sci USA 104:5437–5442. https://doi.org/10.1073/pnas.0701061104

    CAS  Article  PubMed  Google Scholar 

  91. Song L, Axtell MJ, Fedoroff NV (2010) RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Curr Biol 20:37–41. https://doi.org/10.1016/j.cub.2009.10.076

    CAS  Article  PubMed  Google Scholar 

  92. Song JB, Gao S, Wang Y, Li BW, Zhang YL, Yang ZM (2016) miR394 and its target gene LCR are involved in cold stress response in Arabidopsis. Plant Gene 5:56–64. https://doi.org/10.1016/j.plgene.2015.12.001

    CAS  Article  Google Scholar 

  93. Speth C, Willing EM, Rausch S, Schneeberger K, Laubinger S (2013) RACK1 scaffold proteins influence miRNA abundance in Arabidopsis. Plant J 76:433–445. https://doi.org/10.1111/tpj.12308

    CAS  Article  PubMed  Google Scholar 

  94. Starega-Roslan J, Krol J, Koscianska E, Kozlowski P, Szlachcic WJ, Sobczak K, Krzyzosiak WJ (2011) Structural basis of microRNA length variety. Nucleic Acids Res 39:257–268. https://doi.org/10.1093/nar/gkq727

    CAS  Article  PubMed  Google Scholar 

  95. Stepien A, Knop K, Dolata J, Taube M, Bajczyk M, Barciszewska-Pacak M, Pacak A, Jarmolowski A, Szweykowska-Kulinska Z (2017) Posttranscriptional coordination of splicing and miRNA biogenesis in plants. Wiley Interdiscip Rev RNA. https://doi.org/10.1002/wrna.1403

    Article  PubMed  Google Scholar 

  96. Su C, Li Z, Cheng J, Li L, Zhong S, Liu L, Zheng Y, Zheng B (2017) The Protein Phosphatase 4 and SMEK1 complex dephosphorylates HYL1 to promote miRNA biogenesis by Antagonizing the MAPK cascade in Arabidopsis. Dev Cell 41:527–539. https://doi.org/10.1016/j.devcel.2017.05.008 (e5)

    CAS  Article  PubMed  Google Scholar 

  97. Sun Z, Guo T, Liu Y, Liu Q, Fang Y (2015) The roles of Arabidopsis CDF2 in transcriptional and posttranscriptional regulation of primary MicroRNAs. PLoS Genet 11:e1005598. https://doi.org/10.1371/journal.pgen.1005598

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. Tomassi AH, Ré DA, Romani F, Cambiagno DA, Gonzalo L, Moreno JE, Arce AL, Manavella PA (2020) The intrinsically disordered protein CARP9 bridges HYL1 to AGO1 in the nucleus to promote MicroRNA activity. Plant Physiol 184:316–329. https://doi.org/10.1104/pp.20.00258

    CAS  Article  PubMed  Google Scholar 

  99. Tu B, Liu L, Xu C, Zhai J, Li S, Lopez MA, Zhao Y, Yu Y, Ramachandran V, Ren G, Yu B (2015) Distinct and cooperative activities of HESO1 and URT1 nucleotidyl transferases in microRNA turnover in Arabidopsis. PLoS Genet 11:e1005119. https://doi.org/10.1371/journal.pgen.1005119

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. Wang JJ, Guo HS (2015) Cleavage of INDOLE-3-ACETIC ACID INDUCIBLE28 mRNA by microRNA847 upregulates auxin signaling to modulate cell proliferation and lateral organ growth in Arabidopsis. Plant Cell 27:574–590. https://doi.org/10.1105/tpc.15.00101

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. Wang W, Ye R, Xin Y, Fang X, Li C, Shi H, Zhou X, Qi Y (2011) An importin β protein negatively regulates MicroRNA activity in Arabidopsis. Plant Cell 23:3565–3576. https://doi.org/10.1105/tpc.111.091058

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. Wang L, Song X, Gu L, Li X, Cao S, Chu C, Cui X, Chen X, Cao X (2013) NOT2 proteins promote polymerase II-dependent transcription and interact with multiple MicroRNA biogenesis factors in Arabidopsis. Plant Cell 25:715–727. https://doi.org/10.1105/tpc.112.105882

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. Wang B, Duan CG, Wang X, Hou YJ, Yan J, Gao C, Kim JH, Zhang H, Zhu JK (2015a) HOS1 regulates Argonaute1 by promoting transcription of the microRNA gene MIR168b in Arabidopsis. Plant J 81:861–870. https://doi.org/10.1111/tpj.12772

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. Wang Y, Li K, Chen L, Zou Y, Liu H, Tian Y, Li D, Wang R, Zhao F, Ferguson BJ, Gresshoff PM (2015b) MicroRNA167-directed regulation of the auxin response factors GmARF8a and GmARF8b Is required for soybean nodulation and lateral root development. Plant Physiol 168:984–999. https://doi.org/10.1104/pp.15.00265

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. Wang X, Wang Y, Dou Y, Chen L, Wang J, Jiang N, Guo C, Yao Q, Wang C, Liu L, Yu B (2018a) Degradation of unmethylated miRNA/miRNA* s by a DEDDy-type 3′ to 5′ exoribonuclease Atrimmer 2 in Arabidopsis. Proc Natl Acad Sci 10 115(28):E6659–E6667. https://doi.org/10.1073/pnas.1721917115

    CAS  Article  Google Scholar 

  106. Wang Z, Ma Z, Castillo-González C, Sun D, Li Y, Yu B, Zhao B, Li P, Zhang X (2018b) SWI2/SNF2 ATPase CHR2 remodels pri-miRNAs via Serrate to impede miRNA production. Nature 557:516–521. https://doi.org/10.1038/s41586-018-0135-x

    CAS  Article  PubMed  Google Scholar 

  107. Wang J, Chen S, Jiang N, Li N, Wang X, Li Z, Li X, Liu H, Li L, Yang Y, Ni T (2019a) Spliceosome disassembly factors ILP1 and NTR1 promote miRNA biogenesis in Arabidopsis thaliana. Nucleic Acids Res. 47:7886–7900. https://doi.org/10.1093/nar/gkz526

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. Wang J, Mei J, Ren G (2019b) Plant microRNAs: biogenesis, homeostasis, and degradation. Front Plant Sci 10:360. https://doi.org/10.3389/fpls.2019.00360

    Article  PubMed  PubMed Central  Google Scholar 

  109. Wang S, Quan L, Li S, You C, Zhang Y, Gao L, Zeng L, Liu L, Qi Y, Mo B, Chen X (2019c) The PROTEIN PHOSPHATASE4 complex promotes transcription and processing of primary microRNAs in Arabidopsis. Plant Cell 31:486–501. https://doi.org/10.1105/tpc.18.00556

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. Werner S, Wollmann H, Schneeberger K, Weigel D (2010) Structure determinants for accurate processing of miR172a in Arabidopsis thaliana. Curr Biol 20:42–48. https://doi.org/10.1016/j.cub.2009.10.073

    CAS  Article  PubMed  Google Scholar 

  111. Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38:465–475. https://doi.org/10.1016/j.molcel.2010.03.008

    CAS  Article  PubMed  Google Scholar 

  112. Wu X, Shi Y, Li J, Xu L, Fang Y, Li X, Qi Y (2013) A role for the RNA-binding protein MOS2 in microRNA maturation in Arabidopsis. Cell Res 23:645–657. https://doi.org/10.1038/cr.2013.23

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. Xie M, Zhang S, Yu B (2015) microRNA biogenesis, degradation and activity in plants. Cell Mol Life Sci 72:87–99. https://doi.org/10.1007/s00018-014-1728-7

    CAS  Article  PubMed  Google Scholar 

  114. Yan J, Wang P, Wang B, Hsu CC, Tang K, Zhang H, Hou YJ, Zhao Y, Wang Q, Zhao C, Zhu X (2017) The SnRK2 kinases modulate miRNA accumulation in Arabidopsis. PLoS Genet 13:e1006753. https://doi.org/10.1371/journal.pgen.1006753

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  115. Yang L, Liu Z, Lu F, Dong A, Huang H (2006a) SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J 47:841–850. https://doi.org/10.1111/j.1365-313X.2006.02835.x

    CAS  Article  PubMed  Google Scholar 

  116. Yang Z, Ebright YW, Yu B, Chen X (2006b) HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2’ OH of the 3’ terminal nucleotide. Nucleic Acids Res 34:667–675. https://doi.org/10.1093/nar/gkj474

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  117. Yang X, Ren W, Zhao Q, Zhang P, Wu F, He Y (2014) Homodimerization of HYL1 ensures the correct selection of cleavage sites in primary miRNA. Nucleic Acids Res 42:12224–12236. https://doi.org/10.1093/nar/gku907

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  118. Yu B, Bi L, Zheng B, Ji L, Chevalier D, Agarwal M, Ramachandran V, Li W, Lagrange T, Walker JC, Chen X (2008) The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci USA 105:10073–10078. https://doi.org/10.1073/pnas.0804218105

    Article  PubMed  Google Scholar 

  119. Yu Y, Jia T, Chen X (2017a) The ‘how’and ‘where’of plant micro RNAs. New Phytol 216:1002–1017. https://doi.org/10.1111/nph.14834

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  120. Yu Y, Ji L, Le BH, Zhai J, Chen J, Luscher E, Gao L, Liu C, Cao X, Mo B, Ma J (2017b) ARGONAUTE10 promotes the degradation of miR165/6 through the SDN1 and SDN2 exonucleases in Arabidopsis. PLoS Biol 15:e2001272. https://doi.org/10.1371/journal.pbio.2001272

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  121. Yu C, Chen Y, Cao Y, Chen H, Wang J, Bi YM, Tian F, Yang F, Rothstein SJ, Zhou X, He C (2018) Overexpression of miR169o, an overlapping microRNA in response to both nitrogen limitation and bacterial infection, promotes nitrogen use efficiency and susceptibility to bacterial blight in Rice. Plant Cell Physiol 59:1234–1247. https://doi.org/10.1093/pcp/pcy060

    CAS  Article  PubMed  Google Scholar 

  122. Zhan X, Wang B, Li H, Liu R, Kalia RK, Zhu JK, Chinnusamy V (2012) Arabidopsis proline-rich protein important for development and abiotic stress tolerance is involved in microRNA biogenesis. Proc Natl Acad Sci USA 109:18198–18203. https://doi.org/10.1073/pnas.1216199109

    Article  PubMed  Google Scholar 

  123. Zhang B, Pan X, Cobb GP, Anderson TA (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16. https://doi.org/10.1016/j.ydbio.2005.10.036

    CAS  Article  PubMed  Google Scholar 

  124. Zhang H, He X, Zhu JK (2013a) RNA-directed DNA methylation in plants: Where to start? RNA Biol 10:1593–1596. https://doi.org/10.4161/rna.26312

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zhang S, Xie M, Ren G, Yu B (2013b) CDC5, a DNA binding protein, positively regulates posttranscriptional processing and/or transcription of primary microRNA transcripts. Proc Natl Acad Sci USA 110:17588–17593. https://doi.org/10.1073/pnas.1310644110

    Article  PubMed  Google Scholar 

  126. Zhang S, Liu Y, Yu B (2014a) PRL1, an RNA-binding protein, positively regulates the accumulation of miRNAs and siRNAs in Arabidopsis. PLoS Genet 10:e1004841. https://doi.org/10.1371/journal.pgen.1004841

    Article  PubMed  PubMed Central  Google Scholar 

  127. Zhang X, Niu D, Carbonell A, Wang A, Lee A, Tun V, Wang Z, Carrington JC, Chia-en AC, Jin H (2014b) ARGONAUTE PIWI domain and microRNA duplex structure regulate small RNA sorting in Arabidopsis. Nat Commun 5:5468. https://doi.org/10.1038/ncomms6468

    Article  PubMed  PubMed Central  Google Scholar 

  128. Zhang T, Zhao YL, Zhao JH, Wang S, Jin Y, Chen ZQ, Fang YY, Hua CL, Ding SW, Guo HS (2016) Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nature Plants 2(10):16153. https://doi.org/10.1038/nplants.2016.153

    CAS  Article  PubMed  Google Scholar 

  129. Zhang Z, Guo X, Ge C, Ma Z, Jiang M, Li T, Koiwa H, Yang SW, Zhang X (2017) KETCH1 imports HYL1 to nucleus for miRNA biogenesis in Arabidopsis. Proc Natl Acad Sci USA 114:4011–4016. https://doi.org/10.1073/pnas.1619755114

    CAS  Article  PubMed  Google Scholar 

  130. Zhang S, Dou Y, Li S, Ren G, Chevalier D, Zhang C, Yu B (2018) DAWDLE interacts with DICER-LIKE proteins to mediate small RNA biogenesis. Plant Physiol 177:1142–1151. https://doi.org/10.1104/pp.18.00354

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  131. Zhang B, You C, Zhang Y, Zeng L, Hu J, Zhao M, Chen X (2020) Linking key steps of microRNA biogenesis by TREX-2 and the nuclear pore complex in Arabidopsis. Nat Plants 6:957–969. https://doi.org/10.1038/s41477-020-0726-z

    CAS  Article  PubMed  Google Scholar 

  132. Zhou J, Deng K, Cheng Y, Zhong Z, Tian L, Tang X, Tang A, Zheng X, Zhang T, Qi Y, Zhang Y (2017) CRISPR-Cas9 based genome editing reveals new insights into microRNA function and regulation in rice. Front Plant Sci 13(8):1598. https://doi.org/10.3389/fpls.2017.01598

    Article  Google Scholar 

  133. Zhu H, Zhou Y, Castillo-González C, Lu A, Ge C, Zhao YT, Duan L, Li Z, Axtell MJ, Wang XJ, Zhang X (2013) Bidirectional processing of pri-miRNAs with branched terminal loops by Arabidopsis Dicer-like1. Nat Struct Mol Biol 20:1106–1115. https://doi.org/10.1038/nsmb.2646

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. Zuber H, Scheer H, Joly AC, Gagliardi D (2018) Respective contributions of URT1 and HESO1 to the uridylation of 5′ fragments produced From RISC-cleaved mRNAs. Front Plant Sci 9:1438. https://doi.org/10.3389/fpls.2018.01438

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

JJ had the idea for the article, performed the literature search and data analysis, drafted and critically revised the work.

Corresponding author

Correspondence to Jayanti Jodder.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Wusheng Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jodder, J. Regulation of pri-MIRNA processing: mechanistic insights into the miRNA homeostasis in plant. Plant Cell Rep (2021). https://doi.org/10.1007/s00299-020-02660-7

Download citation

Keywords

  • microRNA (miRNA)
  • Pri-MIRNA
  • Processing
  • Regulation
  • Mechanism
  • Interaction