The transcriptional response to salicylic acid plays a role in Fusarium yellows resistance in Brassica rapa L.

Abstract

Key message

Fusarium yellows resistant and susceptible lines in Brassica rapa showed different salicylic acid responses; the resistant line showed a similar response to previous reports, but the susceptible line differed.

Abstract

Fusarium yellows caused by Fusarium oxysporum f. sp. conglutinans (Foc) is an important disease. Previous studies showed that genes related to salicylic acid (SA) response were more highly induced following Foc infection in Brassica rapa Fusarium yellows resistant lines than susceptible lines. However, SA-induced genes have not been identified at the whole genome level and it was unclear whether they were up-regulated by Foc inoculation. Transcriptome analysis with and without SA treatment in the B. rapa Fusarium yellows susceptible line ‘Misugi’ and the resistant line ‘Nanane’ was performed to obtain insights into the relationship between SA sensitivity/response and Fusarium yellows resistance. ‘Nanane’s up-regulated genes were related to SA response and down-regulated genes were related to jasmonic acid (JA) or ethylene (ET) response, but differentially expressed genes in ‘Misugi’ were not. This result suggests that Fusarium yellows resistant and susceptible lines have a different SA response and that an antagonistic transcription between SA and JA/ET responses was found only in a Fusarium yellows resistant line. SA-responsive genes were induced by Foc inoculation in Fusarium yellows resistant (RJKB-T23) and susceptible lines (RJKB-T24). By contrast, 39 SA-induced genes specific to RJKB-T23 might function in the defense response to Foc. In this study, SA-induced genes were identified at the whole genome level, and the possibility, the defense response to Foc observed in a resistant line could be mediated by SA-induced genes, is suggested. These results will be useful for future research concerning the SA importance in Foc or other diseases resistance in B. rapa.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Availability of data

The RNA-sequencing data have been deposited with DDBJ (https://www.ddbj.nig.ac.jp) under DRA010766.

References

  1. Abe H, Narusaka Y, Sasaki I et al (2011) Development of full-length cDNAs from Chinese cabbage (Brassica rapa subsp. pekinensis) and identification of marker genes for defence response. DNA Res 18:277–289

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    CAS  PubMed  Article  Google Scholar 

  3. Blanco F, Salinas P, Cecchini NM et al (2009) Early genomic responses to salicylic acid in Arabidopsis. Plant Mol Biol 70:79–102

    CAS  PubMed  Article  Google Scholar 

  4. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Caarls L, Pieterse CMJ, Van Wees SCM (2015) How salicylic acid takes transcriptional control over jasmonic acid signaling. Front Plant Sci 6:170

    PubMed  PubMed Central  Article  Google Scholar 

  6. Cao J, Zeng K, Jiang W (2006) Enhancement of postharvest disease resistance in Ya Li pear (Pyrus bretschneideri) fruit by salicylic acid sprays on the trees during fruit growth. Eur J Plant Pathol 114:363–370

    CAS  Article  Google Scholar 

  7. Chen L, Zhang L, Yu D (2010) Wounding-induced WRKY8 is involved in basal defense in Arabidopsis. Mol Plant-Microbe Interact 23:558–565

    CAS  PubMed  Article  Google Scholar 

  8. Chung S, Lee K, Oh K et al (2005) Molecular characterization of a PR4 gene in Chinese cabbage. Integr Biosci 9:239–244

    CAS  Article  Google Scholar 

  9. Daly P, Tomkins B (1995) Production and postharvest handling of Chinese cabbage (Brassica rapa var. pekinensis). RIRDC 97:41

  10. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548

    CAS  PubMed  Article  Google Scholar 

  11. Du Z, Zhou X, Ling Y et al (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Dubos C, Stracke R, Grotewold E et al (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    CAS  PubMed  Article  Google Scholar 

  13. Edgar CI, McGrath KC, Dombrecht B et al (2006) Salicylic acid mediates resistance to the vascular wilt pathogen Fusarium oxysporum in the model host Arabidopsis thaliana. Australas Plant Pathol 35:581–591

    CAS  Article  Google Scholar 

  14. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    CAS  PubMed  Article  Google Scholar 

  15. Eulgem T, Rushton PJ, Robatzek S et al (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    CAS  PubMed  Article  Google Scholar 

  16. Fasani E, DalCorso G, Costa A et al (2019) The Arabidopsis thaliana transcription factor MYB59 regulates calcium signalling during plant growth and stress response. Plant Mol Biol 99:517–534

    CAS  PubMed  Article  Google Scholar 

  17. Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863

    CAS  PubMed  Article  Google Scholar 

  18. Fujimoto R, Sasaki T, Nishio T (2006) Characterization of DNA methyltransferase genes in Brassica rapa. Genes Genet Syst 81:235–242

    CAS  PubMed  Article  Google Scholar 

  19. Gigolashvili T, Yatusevich R, Berger B et al (2007) The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 51:247–261

    CAS  PubMed  Article  Google Scholar 

  20. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    CAS  PubMed  Article  Google Scholar 

  21. Hu Y, Dong Q, Yu D (2012) Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Sci 185–186:288–297

    PubMed  Article  CAS  Google Scholar 

  22. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    CAS  PubMed  Article  Google Scholar 

  23. Journot-Catalino H, Somssich IE, Roby D et al (2006) The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18:3289–3302

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Kanehisa M, Sato Y (2020) KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci 29:28–35

    CAS  PubMed  Article  Google Scholar 

  25. Kawamura K, Kawanabe T, Shimizu M et al (2016) Genetic characterization of inbred lines of Chinese cabbage by DNA markers; towards the application of DNA markers to breeding of F1 hybrid cultivars. Data Brief 6:229–237

    PubMed  Article  Google Scholar 

  26. Kim KC, Lai Z, Fan B et al (2008) Arabidopsis WRKY38 and WRKY62 transcription factors interact with Histone Deacetylase 19 in basal defense. Plant Cell 20:2357–2371

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339–2350

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kitajima S, Sato F (1999) Plant pathogenesis-related proteins: molecular mechanisms of gene expression and protein function. J Biochem 125:1–8

    CAS  PubMed  Article  Google Scholar 

  30. Klessig DF, Choi HW, Dempsey DA (2018) Systemic acquired resistance and salicylic acid: past, present, and future. Mol Plant-Microbe Interact 31:871–888

    CAS  PubMed  Article  Google Scholar 

  31. Knepper C, Savory EA, Day B (2011) Arabidopsis NDR1 is an integrin-like protein with a role in fluid loss and plasma membrane-cell wall adhesion. Plant Physiol 156:286–300

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Kumar D (2014) Salicylic acid signaling in disease resistance. Plant Sci 228:127–134

    CAS  PubMed  Article  Google Scholar 

  33. Lee K, Cho T (2003) Characterization of a salicylic acid- and pathogen-induced lipase-like gene in Chinese cabbage. J Biochem Mol Biol 36:433–441

    CAS  PubMed  Google Scholar 

  34. Lv H, Fang Z, Yang L et al (2014) Mapping and analysis of a novel candidate Fusarium wilt resistance gene FOC1 in Brassica oleracea. BMC Genom 15:1094

    Article  CAS  Google Scholar 

  35. Lv H, Miyaji N, Osabe K et al (2020) The importance of genetic and epigenetic research in the Brassica vegetables in the face of climate change. In: Kole C (ed) Genomic designing of climate-smart vegetable crops, 1st edn. Springer, Berlin, pp 161–255

    Google Scholar 

  36. Mandal S, Mallick N, Mitra A (2009) Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiol Biochem 47:642–649

    CAS  PubMed  Article  Google Scholar 

  37. Mehraj H, Akter A, Miyaji N et al (2020) Genetics of clubroot and fusarium wilt disease resistance in Brassica vegetables: the application of marker assisted breeding for disease resistance. Plants 9:726

    CAS  PubMed Central  Article  PubMed  Google Scholar 

  38. Miyaji N, Shimizu M, Miyazaki J et al (2017) Comparison of transcriptome profiles by Fusarium oxysporum inoculation between Fusarium yellows resistant and susceptible lines in Brassica rapa L. Plant Cell Rep 36:1841–1854

    CAS  PubMed  Article  Google Scholar 

  39. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Narusaka Y, Narusaka M, Horio T et al (1999) Comparison of local and systemic induction of acquired disease resistance in cucumber plants treated with benzothiadiazoles or salicylic acid. Plant Cell Physiol 40:388–395

    CAS  PubMed  Article  Google Scholar 

  41. Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Park YS, Min HJ, Ryang SH et al (2003) Characterization of salicylic acid-induced genes in Chinese cabbage. Plant Cell Rep 21:1027–1034

    CAS  PubMed  Article  Google Scholar 

  43. Pérez-Rodríguez P, Riaño-Pachón DM, Corrêa LGG et al (2010) PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Res 38:D822–D827

    PubMed  Article  CAS  Google Scholar 

  44. Pieterse CMJ, Van der Does D, Zamioudis C et al (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    CAS  PubMed  Article  Google Scholar 

  45. Pu Z, Shimizu M, Zhang Y et al (2012) Genetic mapping of a fusarium wilt resistance gene in Brassica oleracea. Mol Breed 30:809–818

    CAS  Article  Google Scholar 

  46. Pu Z, Ino Y, Kimura Y et al (2016) Changes in the proteome of xylem sap in Brassica oleracea in response to Fusarium oxysporum stress. Front Plant Sci 7:31

    PubMed  PubMed Central  Article  Google Scholar 

  47. Rekhter D, Lüdke D, Ding Y et al (2019) Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science 365:498–502

    CAS  PubMed  Article  Google Scholar 

  48. Seo M, Kim JS (2017) Understanding of MYB transcription factors involved in glucosinolate biosynthesis in Brassicaceae. Molecules 22:1549

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  49. Shigenaga AM, Argueso CT (2016) No hormone to rule them all: interactions of plant hormones during the responses of plants to pathogens. Semin Cell Dev Biol 56:174–189

    CAS  PubMed  Article  Google Scholar 

  50. Shigenaga AM, Berens ML, Tsuda K et al (2017) Towards engineering of hormonal crosstalk in plant immunity. Curr Opin Plant Biol 38:164–172

    CAS  PubMed  Article  Google Scholar 

  51. Shimizu M, Fujimoto R, Ying H et al (2014) Identification of candidate genes for fusarium yellows resistance in Chinese cabbage by differential expression analysis. Plant Mol Biol 85:247–257

    CAS  PubMed  Article  Google Scholar 

  52. Shimizu M, Pu Z, Kawanabe T et al (2015) Map-based cloning of a candidate gene conferring Fusarium yellows resistance in Brassica oleracea. Theor Appl Genet 128:119–130

    CAS  PubMed  Article  Google Scholar 

  53. Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89–100

    CAS  PubMed  Article  Google Scholar 

  54. Sun T, Huang J, Xu Y et al (2020) Redundant CAMTA transcription factors negatively regulate the biosynthesis of salicylic acid and N-Hydroxypipecolic acid by modulating the expression of SARD1 and CBP60g. Mol Plant 13:144–156

    CAS  PubMed  Article  Google Scholar 

  55. Thomma BPHJ, Eggermont K, Penninckx IAMA et al (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci U S A 95:15107–15111

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Trapnell C, Roberts A, Goff L et al (2013) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  Google Scholar 

  57. Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    CAS  PubMed  Article  Google Scholar 

  58. Walker JC (1930) Inheritance of fusarium resistance in cabbage. J Agric Res 40:721–745

    Google Scholar 

  59. Wang L, Tsuda K, Sato M et al (2009) Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathog 5:e1000301

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. Wang L, Tsuda K, Truman W et al (2011) CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling. Plant J 67:1029–1041

    CAS  PubMed  Article  Google Scholar 

  61. Xie YD, Li W, Guo D et al (2010) The Arabidopsis gene SIGMA FACTOR-BINDING PROTEIN 1 plays a role in the salicylate- and jasmonate-mediated defence responses. Plant Cell Environ 33:828–839

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Xing DH, Lai ZB, Zheng ZY et al (2008) Stress- and pathogen-induced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense. Mol Plant 1:459–470

    CAS  PubMed  Article  Google Scholar 

  63. Xu X, Chen C, Fan B et al (2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18:1310–1326

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Yan S, Dong X (2014) Perception of the plant immune signal salicylic acid. Curr Opin Plant Biol 20:64–68

    CAS  PubMed  Article  Google Scholar 

  65. Yanhui C, Xiaoyuan Y, Kun H et al (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60:107–124

    PubMed  Article  CAS  Google Scholar 

  66. Yao H, Tian S (2005) Effects of pre- and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biol Technol 35:253–262

    CAS  Article  Google Scholar 

  67. Yi GE, Robin AHK, Yang K et al (2016) Exogenous methyl jasmonate and salicylic acid induce subspecies-specific patterns of glucosinolate accumulation and gene expression in Brassica oleracea L. Molecules 21:1417

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  68. Zeng K, Cao J, Jiang W (2006) Enhancing disease resistance in harvested mango (Mangifera indica L. cv. ‘Matisu’) fruit by salicylic acid. J Sci Food Agric 86:694–698

    CAS  Article  Google Scholar 

  69. Zhang Y, Zhao L, Zhao J et al (2017) S5H/DMR6 encodes a salicylic acid 5-hydroxylase that fine-tunes salicylic acid homeostasis. Plant Physiol 175:1082–1093

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. Zhang W, Zhao F, Jiang L et al (2018) Different pathogen defense strategies in Arabidopsis: more than pathogen recognition. Cells 7:252

    CAS  PubMed Central  Article  PubMed  Google Scholar 

Download references

Acknowledgements

Computations were partially performed on the NIG supercomputer at ROIS National Institute of Genetics.

Funding

This work was funded by Grant-in-Aid for JSPS Research Fellow to NM and grants from Project of the NARO Bio-oriented Technology Research Advancement Institution (Research program on development of innovation technology) to RF.

Author information

Affiliations

Authors

Contributions

RF, ESD, and TTY designed research. NM performed research. NM and MS analyzed the RNA-seq data. NM, RF, and ESD wrote the paper.

Corresponding author

Correspondence to Ryo Fujimoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Kinya Toriyama.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 433 KB)

Supplementary file1 (XLSX 767 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miyaji, N., Shimizu, M., Takasaki-Yasuda, T. et al. The transcriptional response to salicylic acid plays a role in Fusarium yellows resistance in Brassica rapa L.. Plant Cell Rep (2021). https://doi.org/10.1007/s00299-020-02658-1

Download citation

Keywords

  • Salicylic acid
  • Fusarium yellows
  • Brassica rapa
  • Transcriptome
  • Systemic acquired resistance