Skip to main content
Log in

Identification and analysis of a differentially expressed wheat RING-type E3 ligase in spike primordia development during post-vernalization

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

We identified a RING-type E3 ligase (TaBAH1) protein in winter wheat that targets TaSAHH1 for degradation and might be involved in primordia development by regulating targeted protein degradation.

Abstract

Grain yield per spike in wheat (Triticum aestivum), is mainly determined prior to flowering during mature primordia development; however, the genes involved in primordia development have yet to be characterized. In this study, we demonstrated that, after vernalization for 50 days at 4 °C, there was a rapid acceleration in primordia development to the mature stages in the winter wheat cultivars Keumgang and Yeongkwang compared with the Chinese Spring cultivar. Although Yeongkwang flowers later than Keumgang under normal condition, it has the same heading time and reaches the WS9 stage of floral development after vernalization for 50 days. Using RNA sequencing, we identified candidate genes associated with primordia development in cvs. Keumgang and Yeongkwang, that are differentially expressed during wheat reproductive stages. Among these, the RING-type E3 ligase TaBAH1 (TraesCS5B01G373000) was transcriptionally upregulated between the double-ridge (WS2.5) stage and later stages of floret primordia development (WS10) after vernalization. Transient expression analysis indicated that TaBAH1 was localized to the plasma membrane and nucleus and was characterized by self-ubiquitination activity. Furthermore, we found that TaBAH1 interacts with TaSAHH1 to mediate its polyubiquitination and degradation through a 26S proteasomal pathway. Collectively, the findings of this study indicate that TaBAH1 might play a prominent role in post-vernalization floret primordia development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahrens JL, Loomis WE (1963) Floral induction and development in winter wheat. Crop Sci 3:463–466

    Article  Google Scholar 

  • Ali A, Kim JK, Jan M et al (2019) Rheostatic control of ABA signaling through HOS15-mediated OST1 degradation. Mol Plant 12:1447–1462

    Article  CAS  PubMed  Google Scholar 

  • Anders S, Pyl PT, Huber W (2015) HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    Article  CAS  PubMed  Google Scholar 

  • Bai B, Wu J, Sheng WT, Zhou B, Zhou LJ, Zhuang W, Yao DP, Deng QY (2015) Comparative analysis of anther transcriptome profiles of two different rice male sterile lines genotypes under cold stress. Int J Mol Sci 16:11398–11416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baubec T, Dinh HQ, Pecinka A, Rakic B, Rozhon W, Wohlrab B, von Haeseler A, Mittelsten Scheid O (2010) Cooperation of multiple chromatin modifications can generate unanticipated stability of epigenetic states in Arabidopsis. Plant Cell 22:34–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borden KLB, Freemont PS (1996) The RING finger domain: a recent example of a sequence-structure family. Curr Op Struct Biol 6:395–401

    Article  CAS  Google Scholar 

  • Burghardt LT, Runcie DE, Wilczek AM et al (2016) Fluctuating, warm temperatures decrease the effect of a key floral repressor on flowering time in Arabidopsis thaliana. New Phytol 210:564–576

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Nelson RS, Sherwood JL (1994) Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques 16(4):664–668, 670

    CAS  PubMed  Google Scholar 

  • Chujo H (1966) Difference in vernalization effect in wheat under various temperatures. J Crop Sci Soc Jpn 35:177–186

    Article  Google Scholar 

  • Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinf 11:485

    Article  Google Scholar 

  • Digel B, Pankin A, von Korff M (2015) Global transcriptome profiling of developing leaf and shoot apices reveals distinct genetic and environmental control of floral transition and inflorescence development in barley. Plant Cell 27:2318–2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Distelfeld A, Li C, Dubcovsky J (2009) Regulation of flowering in temperate cereals. Curr Opin Plant Biol 12(2):178–184

    Article  CAS  PubMed  Google Scholar 

  • Ferrante A, Savin R, Slafer GA (2010) Floret development of durum wheat in response to nitrogen availability. J Exp Bot 61:4351–4359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrante A, Savin R, Slafer GA (2013) Floret development and grain setting differences between modern durum wheats under contrasting nitrogen availability. J Exp Bot 64:169–184

    Article  CAS  PubMed  Google Scholar 

  • Fischer RA (2011) Wheat physiology: a review of recent developments. Crop Past Sci 62:95–114

    Article  Google Scholar 

  • Freemont PS (1993) The RING finger. A novel protein sequence motif related to the zinc finger. Ann N York Acad Sci 684:174–192

    Article  CAS  Google Scholar 

  • Freemont PS (2000) RING for destruction? Curr Biol 10:R84–R87

    Article  CAS  PubMed  Google Scholar 

  • Friso S, Choi SW, Girelli D, Mason JB, Dolnikowski GG, Bagley PJ, Olivieri O, Jacques PF, Rosenberg IH, Corrocher R et al (2002) A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci USA 99:5606–5611

    Article  CAS  PubMed  Google Scholar 

  • Ghiglione HO, Gonzalez FG, Serrago R, Maldonado SB, Chilcott C, Curá JA, Miralles DJ, Zhu T, Casal JJ (2008) Autophagy regulated by day length determines the number of fertile florets in wheat. Plant J 55:1010–1024

    Article  CAS  PubMed  Google Scholar 

  • González FG, Slafer GA (2005) Daniel J Miralles 1 Floret development and survival in wheat plants exposed to contrasting photoperiod and radiation environments during stem elongation. Funct Plant Biol 32(3):189–197. https://doi.org/10.1071/FP04104

  • González FG, Miralles DJ, Slafer GA (2011) Wheat floret survival as related to pre-anthesis spike growth. J Exp Bot 62:4889–4901

    Article  PubMed  Google Scholar 

  • Guo Z, Chen D, Schnurbusch T (2015) Variance components, heritability and correlation analysis of anther and ovary size during the floral development of bread wheat. J Exp Bot 66(11):3099–111. https://doi.org/10.1093/jxb/erv117

  • Guo Z, Slafer GA, Schnurbusch T (2016) Genotypic variation in spike fertility traits and ovary size as determinants of floret and grain survival rate in wheat. J Exp Bot 67:4221–4230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hesse H, Hoefgen R (2003) Molecular aspects of methionine biosynthesis. Trends Plant Sci 8:259–262

    Article  CAS  PubMed  Google Scholar 

  • Hsieh LC, Lin SI, Shih AC, Chen JW, Lin WY, Tseng CY, Li WH, Chiou TJ (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151:2120–2132

    Article  PubMed  PubMed Central  Google Scholar 

  • James C, Elena C, Scott AT, Konstantina S, Paolo D, David AL, Donal MO (2007) Haplotype analysis of vernalization loci in European barley germplasm reveals novel VRN-H1 alleles and a predominant winter VRN-H1/VRN-H2 multi-locus haplotype. Theor Appl Genet 115(7):993–1001. https://doi.org/10.1007/s00122-007-0626-x

  • Jung KH, Ko HJ, Nguyen MX, Kim SR, Ronald P, An G (2012) Genome-wide identification and analysis of early heat stress responsive genes in rice. J Plant Biol 55:458–468

    Article  CAS  Google Scholar 

  • Kakumanu A, Ambavaram MM, Klumas C, Krishnan A, Batlang U, Myers E, Grene R, Pereira A (2012) Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. Plant Physiol 160:846–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Method 9:357–359

    Article  CAS  Google Scholar 

  • Lee S, Doxey AC, McConkey BJ, Moffatt BA (2012) Nuclear targeting of methyl-recycling enzymes in Arabidopsis thaliana is mediated by specific protein interactions. Mol Plant 5:231–248

    Article  CAS  PubMed  Google Scholar 

  • Levy YY, Mesnage S, Mylne JS, Gendall AR, Dean C (2002) Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297:243–246

    Article  CAS  PubMed  Google Scholar 

  • Li C, Cao W, Dai T (2001) Dynamic characteristics of floret primordium development in wheat. Field Crop Res 71:71–76

    Article  Google Scholar 

  • Li Y, Fu X, Zhao M, Zhang W, Li B, An D, Li J, Zhang A, Liu R, Liu X (2018) A genome-wide view of transcriptome dynamics during early spike development in bread wheat. Sci Rep 8:15338

    Article  PubMed  PubMed Central  Google Scholar 

  • Li C, Lin H, Chen A, Lau M, Jernstedt J, Dubcovsky J (2019) Wheat VRN1, FUL2 and FUL3 play critical and redundant roles in spikelet development and spike determinacy. Development 146:dev175398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim SD, Hwang JG, Jung CG, Hwang SG, Moon JC, Jang CS (2013) Comprehensive analysis of the rice RING E3 ligase family reveals their functional diversity in response to abiotic stress. DNA Res 20:299–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim SD, Jung CG, Park YC, Lee SC, Lee CH, Lim CW et al (2015) Molecular dissection of a rice microtubule-associated RING finger protein and its potential role in salt tolerance in Arabidopsis. Plant Mol Biol 89:365–384

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{{-\Delta\Delta}{C}_{\text{T}}}\) method. Meth 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Gen Biol 15:550

    Article  Google Scholar 

  • Lu Q, Tang X, Tian G et al (2010) Arabidopsis homolog of the yeast TREX-2 mRNA export complex: components and anchoring nucleoporin. Plant J 61:259–270

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Wang Y, Gu D, Nan J, Chen S, Li H (2017) Overexpression of S-adenosyl-L-methionine synthetase 2 from sugar beet M14 increased Arabidopsis tolerance to salt and oxidative stress. Int J Mol Sci 18:E847

    Article  PubMed  Google Scholar 

  • Mao D, Yu F, Li J, Van de Poel B, Tan D, Li J, Liu Y, Li X, Dong M, Chen L et al (2015) FERONIA receptor kinase interacts with S-adenosylmethionine synthetase and suppresses S-adenosylmethionine production and ethylene biosynthesis in Arabidopsis. Plant Cell Environ 38:2566–2574

    Article  CAS  PubMed  Google Scholar 

  • Massiah M, Matts J, Short K et al (2007) Solution structure of the MID1 B-box2 CHC(D/C)C(2)H(2) zinc-binding domain: insights into an evolutionarily conserved RING fold. J Mol Biol 369:1–10. https://doi.org/10.1016/j.jmb.2007.03.017

    Article  CAS  PubMed  Google Scholar 

  • Meng J, Wang L, Wang J, Zhao X, Cheng J, Yu W, Jin D, Li Q, Gong Z (2018) METHIONINE ADENOSYLTRANSFERASE4 mediates DNA and histone methylation. Plant Physiol 177:652–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzger MB, Pruneda JN, Klevit RE, Weissman AM (2014) RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim Biophys Acta 1843:47–60

    Article  CAS  PubMed  Google Scholar 

  • Meunier CL, Gundale MJ, Sánchez IS, Liess A (2016) Impact of nitrogen deposition on forest and lake food webs in nitrogen-limited environments. Glob Chang Biol 22:164–179. https://doi.org/10.1111/gcb.12967

    Article  PubMed  Google Scholar 

  • Miralles DJ, Katz SD, Colloca A, Slafer GA (1998) Floret development in near isogenic wheat lines differing in plant height. Field Crop Res 59:21–30

    Article  Google Scholar 

  • Miralles DJ, Richards RA, Slafer GA (2000) Duration of the stem elongation period influences the number of fertile florets in wheat and barley. Func Plant Biol 27:931

    Article  Google Scholar 

  • Miralles DJ, Ferro BC, Slafer GA (2001) Developmental responses to sowing date in wheat, barley and rapeseed. Field Crop Res 71:211–223

    Article  Google Scholar 

  • Molloy AM (2012) Genetic aspects of folate metabolism. Subcell Biochem 56:105–130

    Article  CAS  PubMed  Google Scholar 

  • Mull L, Ebbs ML, Bender J (2006) A histone methylation-dependent DNA methylation pathway is uniquely impaired by deficiency in Arabidopsis S-adenosylhomocysteine hydrolase. Genetics 174:1161–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochagavía H, Prieto P, Savin R, Griffiths S, Slafer G (2018) Dynamics of leaf and spikelet primordia initiation in wheat as affected by Ppd-1a alleles under field conditions. J Exp Bot 69:2621–2631

    Article  PubMed  PubMed Central  Google Scholar 

  • Ouyang B, Fei Z, Joung JG, Kolenovsky A, Koh C, Nowak J, Caplan A, Keller WA, Cui Y, Cutler AJ et al (2012) Transcriptome profiling and methyl homeostasis of an Arabidopsis mutant deficient in S-adenosylhomocysteine hydrolase1 (SAHH1). Plant Mol Biol 79:315–331

    Article  CAS  PubMed  Google Scholar 

  • Park YC, Kim JJ, Kim DS, Jang CS (2015) Rice RING E3 ligase may negatively regulate gamma-ray response to mediate the degradation of photosynthesis-related proteins. Planta 241:1119–1129

    Article  CAS  PubMed  Google Scholar 

  • Park YC, Chapagain S, Jang CS (2018) A negative regulator in response to salinity in rice: Oryza sativa salt-, ABA- and drought-induced RING Finger Protein 1 (OsSADR1). Plant Cell Physiol 59:575–589

    Article  CAS  PubMed  Google Scholar 

  • Philipp N, Weichert H, Bohra U et al (2018) Grain number and grain yield distribution along the spike remain stable despite breeding for high yield in winter wheat. PLoS ONE. https://doi.org/10.1371/journal.pone.0205452

    Article  PubMed  PubMed Central  Google Scholar 

  • Pouteau S, Albertini C (2009) The significance of bolting and floral transitions as indicators of reproductive phase change in Arabidopsis. J Exp Bot 60:3367–3377

    Article  CAS  PubMed  Google Scholar 

  • Prince SJ, Joshi T, Mutava RN et al (2015) Comparative analysis of the drought-responsive transcriptome in soybean lines contrasting for canopy wilting. Plant Sci Int J Exp Plant Biol 240:65–78

    CAS  Google Scholar 

  • Rawson HM, Zajac M, Penrose LDJ (1998) Effect of seedling temperature and its duration on development of wheat cultivars differing in vernalization response. Field Crop Res 57:289–300

    Article  Google Scholar 

  • Raza A, Razzaq A, Mehmood SS et al (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8:34

    Article  CAS  PubMed Central  Google Scholar 

  • Reynolds M, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry M, Slafer G (2012) Achieving yield gains in wheat. Plant Cell Environ 35:1799–1823

    Article  PubMed  Google Scholar 

  • Rocha PS, Sheikh M, Melchiorre R, Fagard M, Boutet S, Loach R, Moffatt B, Wagner C, Vaucheret H, Furner I (2005) The Arabidopsis HOMOLOGY-DEPENDENT GENE SILENCING1 gene codes for an S-adenosylL-homocysteine hydrolase required for DNA methylation-dependent gene silencing. Plant Cell 17:404–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuma S, Golan G, Guo Z et al (2019) Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proc Natl Acad Sci USA 116:5182–5187. https://doi.org/10.1073/pnas.1815465116

    Article  CAS  PubMed  Google Scholar 

  • Sasani S, Hemming MN, Oliver SN et al (2009) The influence of vernalization and daylength on expression of flowering-time genes in the shoot apex and leaves of barley (Hordeum vulgare). J Exp Bot 60:2169–2178. https://doi.org/10.1093/jxb/erp098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saurin AJ, Borden KLB, Boddy MN, Freemont PS (1996) Does this have a familiar RING? Trends Biochem Sci 21:208–214

    Article  CAS  PubMed  Google Scholar 

  • Serrago RA, Miralles DJ, Slafer GA (2008) Floret fertility in wheat as affected by photoperiod during stem elongation and removal of spikelets at booting. Eur J Agron 28:301–308

    Article  Google Scholar 

  • Shrestha R, Gómez-Ariza J, Brambilla V, Fornara F (2014) Molecular control of seasonal flowering in rice, Arabidopsis and temperate cereals. Ann Bot 114:1445–1458. https://doi.org/10.1093/aob/mcu032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slafer GA (2003) Genetic basis of yield as viewed from a crop physiologist’s perspective. Annal Appl Biol 142:117–128

    Article  Google Scholar 

  • Slafer G, Rawson H (1994) Sensitivity of wheat phasic development to major environmental factors: a reexamination of some assumptions made by physiologists and modellers. Aus J Plant Physiol 21:393

    Google Scholar 

  • Slafer GA, Araus JL, Royo C, Moral LFGD (2005) Promising eco-physiological traits for genetic improvement of cereal yields in Mediterranean environments. In: Annals of applied biology 146(1):61–70. https://doi.org/10.1111/j.1744-7348.2005.04048.x

  • Slafer GA, Savin R, Sadras VO (2014) Coarse and fine regulation of wheat yield components in response to genotype and environment. Field Crop Res 157:71–83

    Article  Google Scholar 

  • Sreenivasulu N, Schnurbusch T (2012) A genetic playground for enhancing grain number in cereals. Trend Plant Sci 17:91–101

    Article  CAS  Google Scholar 

  • Tanaka H, Masuta C, Uehara K et al (1997) Morphological changes and hypomethylation of DNA in transgenic tobacco expressing antisense RNA of the S-adenosyl-L-homocysteine hydrolase gene. Plant Mol Biol 35:981–986

    Article  CAS  PubMed  Google Scholar 

  • Trione EJ, Metzger RJ (1970) Wheat and barley vernalization in a precise temperature gradient. Crop Sci 10:390–392

    Article  Google Scholar 

  • Ugarte CC, Trupkin SA, Ghiglione H, Slafer G, Casal JJ (2010) Low red/far-red ratios delay spike and stem growth in wheat. J Exp Bot 61:3151–3162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10(6):385–397. https://doi.org/10.1038/nrm2688

  • Waddington S, Cartwright P, Wall P (1983) A quantitative scale of spike initial and pistil development in barley and wheat. Ann Bot 51:119–130

    Article  Google Scholar 

  • Walter M, Chaban C, Schütze K et al (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Zhu D, Huang X, Li S, Gong Y, Yao Q, Fu X, Fan LM, Deng XW (2009) Biochemical insights on degradation of Arabidopsis DELLA proteins gained from a cell-free assay system. Plant Cell 21:2378–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wollenberg AC, Amasino RM (2012) Natural variation in the temperature range permissive for vernalization in accessions of Arabidopsis thaliana. Plant Cell Environ 35:2181–2191

    Article  PubMed  Google Scholar 

  • Yaeno T, Iba K (2008) BAH1/NLA, a RING-type ubiquitin E3 ligase, regulates the accumulation of salicylic acid and immune responses to Pseudomonas syringae DC3000. Plant Physiol 148:1032–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Hu G, Li N et al (2017) Functional characterization of SLSAHH2 in tomato fruit ripening. Front Plant Sci 8:1–12. https://doi.org/10.3389/fpls.2017.01312

    Article  Google Scholar 

  • Yoon JS, Kim JY, Lee MB, Seo YW (2019) Over-expression of the Brachypodium ASR gene, BdASR4, enhances drought tolerance in Brachypodium distachyon. Plant Cell Rep 38:1109–1125

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Bai L, Wei Z, Yuan H, Wang Y, Xu Q, Tang Y, Nyima T (2016) Transcriptome analysis revealed the drought-responsive genes in Tibetan hulless barley. BMC Genom 17:386

    Article  Google Scholar 

  • Zheng C, Zhu Y, Zhu HJ, Kang G, Guo T, Wang C (2014) Floret development and grain setting characteristics in winter wheat in response to pre-anthesis foliar applications of 6-benzylaminopurine and boron. Field Crop Res 169:70–76

    Article  Google Scholar 

  • Zheng C, Zhu Y, Wang C, Guo T (2016) Wheat grain yield increase in response to pre-anthesis foliar application of 6-benzylaminopurine is dependent on floret development. PLoS ONE 11:1–14

    Google Scholar 

  • Zikhali M, Griffiths S (2015) The effect of Earliness per se (Eps) genes on flowering time in bread wheat. In: Ogihara Y, Takumi S, Handa H (eds) Advances in wheat genetics: from genome to field. Springer, Tokyo, pp 339–345

    Chapter  Google Scholar 

Download references

Funding

This work was supported by a Korea University Grant and Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT & Future Planning (2017R1D1A1B06030349).

Author information

Authors and Affiliations

Authors

Contributions

JHK, IUK, CWL, DYK, and YWS conceived and designed the experiments; JHK, IUK, CWL, YCP, JHK, and SDL performed the experiments; and JHK, IUK, DYK, and YWS analyzed the data and wrote the paper. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Yong Weon Seo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Günther Hahne.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Fig. S1.

qRT-PCR profiles of TaBAH1 induced by vernalization for 50 days in Chinese Spring, with the TaActin gene used as a control to normalize expression levels. Data represent the mean ± SD (n = 3) of three replicates (JPG 48 KB)

Supplementary Fig. S2.

qRT-PCR profiles of TaSAHH1 induced by vernalization for 50 days, with the TaActin gene used as a control to normalize expression levels. Data represent the mean ± SD (n = 3) of three replicates (JPG 93 KB)

Supplementary Fig. S3.

A 35S::TaSAHH1-GFP protein was transiently expressed in wheat protoplasts, and localization of the protein was scored (JPG 75 KB)

Supplementary Fig. S4. Specific UBCs provide evidence for the auto-ubiquitination of TaBAH1 in vitro

. (A) Multiple alignment among RING domain of BAH1 proteins. (B) Recombinant MBP-BAH1, MBP-BAH1 (C288A), His-UBC1, His-UBC2, His-UBC8, His-UBC9, His-UBC10, His-UBC11, and His-UBC19 proteins were purified from Escherichia coli extracts and used to assay MBP-BAH1 and MBP-BAH1 (C288A) for E3 activity in the presence of human E1, Arabidopsis UBCs, and ubiquitin. Polyubiquitinated TaBAH1 was detected using a Ubi antibody. C288A: MBP-TaBAH1 (C288A). (JPG 127 KB)

Supplementary Table S1.

The PCR primers used in this study. (XLSX 13 KB)

Supplementary Table S2.

Proteins that interact with TaBAH1 identified from a yeast two-hybrid screen. (XLSX 8 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Khan, I.U., Lee, C.W. et al. Identification and analysis of a differentially expressed wheat RING-type E3 ligase in spike primordia development during post-vernalization. Plant Cell Rep 40, 543–558 (2021). https://doi.org/10.1007/s00299-020-02651-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-020-02651-8

Keywords

Navigation