Skip to main content
Log in

Piriformospora indica colonization increases the growth, development, and herbivory resistance of sweet potato (Ipomoea batatas L.)

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Piriformospora indica symbiosis promoted the growth and photosynthesis, and simultaneously enhanced the resistance against insect herbivory by regulating sporamin-dependent defense in sweet potato.

Abstract

Piriformospora indica (P. indica), a versatile endophytic fungus, promotes the growth and confers resistance against multiple stresses by root colonization in plant hosts. In this study, the effects of P. indica colonization on the growth, physiological change, and herbivore resistance of leaf-vegetable sweet potato cultivar were investigated. P. indica symbiosis significantly improved the biomass in both above- and under-ground parts of sweet potato plants. In comparison with the non-colonized plants, the content of photosynthetic pigments and the efficiency of photosynthesis were increased in P. indica-colonized sweet potato plants. Further investigation showed that the activity of catalase was enhanced in both leaves and roots of sweet potato plants after colonization, but ascorbate peroxidase, peroxidase, and superoxide dismutase were not enhanced. Furthermore, the interaction between P. indica and sweet potato plants also showed the biological function in jasmonic acid (JA)-mediated defense. The plants colonized by P. indica had greatly increased JA accumulation and defense gene expressions, including IbNAC1, IbbHLH3, IbpreproHypSys, and sporamin, leading to elevated trypsin inhibitory activity, which was consistent with a reduced Spodoptera litura performance when larvae fed on the leaves of P. indica-colonized sweet potato plants. The root symbiosis of P. indica is helpful for the plant promoting growth and development and has a strong function as resistance inducers against herbivore attack in sweet potato cultivation by regulating sporamin-dependent defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

APX:

Ascorbate peroxidase

Car:

Carotenoids

Chl:

Chlorophyll

CAT:

Catalase

ETR:

Relative electron transport rate

P. indica:

Piriformospora indica

JA:

Jasmonic acid

SA:

Salicylic acid

SOD:

Superoxide dismutase

TPI:

Trypsin inhibitor

References

  • Baishya D, Deka P, Kalita MC (2015) In vitro co-cultivation of Piriformospora indica filtrate for improve biomass productivity in Artemisia annua (L.). Symbiosis 66:37–46

    Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621

    CAS  PubMed  Google Scholar 

  • Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schäfer P, Schwarczinger I (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510

    CAS  PubMed  Google Scholar 

  • Barazani O, Benderoth M, Groten K, Kuhlemeier C, Baldwin IT (2005) Piriformospora indica and Sebacina vermifera increase growth performance at the expense of herbivore resistance in Nicotiana attenuata. Oecologia 146:234–243

    PubMed  Google Scholar 

  • Chen H-J, Wang S-J, Chen C-C, Yeh K-W (2006) New gene construction strategy in T-DNA vector to enhance expression level of sweet potato sporamin and insect resistance in transgenic Brassica oleracea. Plant Sci 171:367–374

    CAS  PubMed  Google Scholar 

  • Chen Y-C, Siems WF, Pearce G, Ryan CA (2008) Six peptide wound signals derived from a single precursor protein in Ipomoea batatas leaves activate the expression of the defense gene sporamin. J Biol Chem 283:11469–11476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H-J, Wu S-D, Huang G-J, Shen C-Y, Afiyanti M, Li W-J, Lin Y-H (2012) Expression of a cloned sweet potato catalase SPCAT1 alleviates ethephon-mediated leaf senescence and H2O2 elevation. J Plant Physiol 169:86–97

    CAS  PubMed  Google Scholar 

  • Chen PJ, Senthilkumar R, Jane WN, He Y, Tian Z, Yeh KW (2014) Transplastomic Nicotiana benthamiana plants expressing multiple defence genes encoding protease inhibitors and chitinase display broad-spectrum resistance against insects, pathogens and abiotic stresses. Plant Biotechnol J 12:503–515

    CAS  PubMed  Google Scholar 

  • Chen SP, Lin IW, Chen X, Huang YH, Chang SC, Lo HS, Lu HH, Yeh KW (2016a) Sweet potato NAC transcription factor, Ib NAC 1, upregulates sporamin gene expression by binding the SWRE motif against mechanical wounding and herbivore attack. Plant J 86:234–248

    CAS  PubMed  Google Scholar 

  • Chen S-P, Kuo C-H, Lu H-H, Lo H-S, Yeh K-W (2016b) The sweet potato NAC-domain transcription factor IbNAC1 is dynamically coordinated by the activator IbbHLH3 and the repressor IbbHLH4 to reprogram the defense mechanism against wounding. PLoS Genet 12:e1006397

    PubMed  PubMed Central  Google Scholar 

  • Chin D-C, Hsieh C-C, Lin H-Y, Yeh K-W (2016) A low glutathione redox state couples with a decreased ascorbate redox ratio to accelerate flowering in Oncidium orchid. Plant and Cell Physiol 57:423–436

    CAS  Google Scholar 

  • Cosme M, Lu J, Erb M, Stout MJ, Franken P, Wurst S (2016) A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling. New Phytol 211:1065–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Albuquerque TMR, Sampaio KB, de Souza EL (2019) Sweet potato roots: unrevealing an old food as a source of health promoting bioactive compounds—a review. Trends Food Sci Technol 85:277–286

    Google Scholar 

  • de Vries FT, Griffiths RI, Knight CG, Nicolitch O, Williams A (2020) Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368:270–274

    PubMed  Google Scholar 

  • de la Fuente Cantó C, Simonin M, King E, Moulin L, Bennett MJ, Castrillo G, Laplaze L (2020) An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness. Plant J. https://doi.org/10.1111/tpj.14781

    Article  PubMed  Google Scholar 

  • Evans JR (1983) Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant Physiol 72:297–302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghaffari MR, Ghabooli M, Khatabi B, Hajirezaei MR, Schweizer P, Salekdeh GH (2016) Metabolic and transcriptional response of central metabolism affected by root endophytic fungus Piriformospora indica under salinity in barley. Plant Mol Biol 90:699–717

    CAS  PubMed  Google Scholar 

  • Ghorbani A, Omran VOG, Razavi SM, Pirdashti H, Ranjbar M (2019) Piriformospora indica confers salinity tolerance on tomato (Lycopersicon esculentum Mill.) through amelioration of nutrient accumulation, K +/Na + homeostasis and water status. Plant Cell Rep 38:1151–1163

    CAS  PubMed  Google Scholar 

  • Hui F, Liu J, Gao Q, Lou B (2015) Piriformospora indica confers cadmium tolerance in Nicotiana tabacum. J Environ Sci 37:184–191

    CAS  Google Scholar 

  • Hwang S-Y, VanToai TT (1991) Abscisic acid induces anaerobiosis tolerance in corn. Plant Physiol 97:593–597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iese V, Holland E, Wairiu M, Havea R, Patolo S, Nishi M, Hoponoa T, Bourke RM, Dean A, Waqainabete L (2018) Facing food security risks: the rise and rise of the sweet potato in the Pacific Islands. Global Food Security 18:48–56

    Google Scholar 

  • Jiang W, Pan R, Wu C, Xu L, Abdelaziz ME, Oelmüller R, Zhang W (2020) Piriformospora indica enhances freezing tolerance and post-thaw recovery in Arabidopsis by stimulating the expression of CBF genes. Plant Signal Behav 15:1745472

    PubMed  Google Scholar 

  • Johnson JM, Alex T, Oelmüller R (2014) Piriformospora indica: the versatile and multifunctional root endophytic fungus for enhanced yield and tolerance to biotic and abiotic stress in crop plants. J Trop Agric 52:103–122

    Google Scholar 

  • Kim Y-H, Park S-C, Ji CY, Lee JJ, Jeong JC, Lee H-S, Kwak S-S (2015) Diverse antioxidant enzyme levels in different sweetpotato root types during storage root formation. Plant Growth Regul 75:155–164

    CAS  Google Scholar 

  • Kitayama M, Samphumphuang T, Tisarum R, Theerawitaya C, Cha-um K, Takagaki M, Cha-um S (2020) Calcium and soluble sugar enrichments and physiological adaptation to mild NaCl salt stress in sweet potato (Ipomoea batatas) genotypes. J Horticult Sci Biotechnol. https://doi.org/10.1080/14620316.2020.1749532

    Article  Google Scholar 

  • Kuo Y-W, Lin J-S, Li Y-C, Jhu M-Y, King Y-C, Jeng S-T (2019) MicroR408 regulates defense response upon wounding in sweet potato. J Exp Bot 70:469–483

    CAS  PubMed  Google Scholar 

  • Lai Y (2008) Breeding of the new sweet potato variety, Tainung no. 73. J Taiwan Agric. Res 57:279–294

    Google Scholar 

  • Li YC, Wan WL, Lin JS, Kuo YW, King YC, Chen YC, Jeng ST (2016) Signal transduction and regulation of IbpreproHypSys in sweet potato. Plant, Cell Environ 39:1576–1587

    CAS  Google Scholar 

  • Li D, Mensah RA, Liu F, Tian N, Qi Q, Yeh K, Xuhan X, Cheng C, Lai Z (2019) Effects of Piriformospora indica on rooting and growth of tissue-cultured banana (Musa acuminata cv Tianbaojiao) seedlings. Sci. Horticult 257:108649

    Google Scholar 

  • Lin H-F, Xiong J, Zhou H-M, Chen C-M, Lin F-Z, Xu X-M, Oelmüller R, Xu W-F, Yeh K-W (2019) Growth promotion and disease resistance induced in Anthurium colonized by the beneficial root endophyte Piriformospora indica. BMC Plant Biol 19:40

    PubMed  PubMed Central  Google Scholar 

  • Liu H, Senthilkumar R, Ma G, Zou Q, Zhu K, Shen X, Tian D, Hua MS, Oelmüller R, Yeh KW (2019) Piriformospora indica-induced phytohormone changes and root colonization strategies are highly host-specific. Plant Signal Behav 14:1632688

    PubMed  PubMed Central  Google Scholar 

  • Long SP, Marshall-Colon A, Zhu X-G (2015) Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161:56–66

    CAS  PubMed  Google Scholar 

  • MacAdam JW, Nelson CJ, Sharp RE (1992) Peroxidase activity in the leaf elongation zone of tall fescue: i. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiol 99:872–878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madaan G, Gosal S, Gosal S, Saroa G, Gill M (2013) Effect of microbial inoculants on the growth and yield of micropropagated banana (Musa indica) cv. Grand Naine. J Hortic Sci Biotechnol 88:643–649

    CAS  Google Scholar 

  • Mao L, Lu H, Wang Q, Cai M (2007) Comparative photosynthesis characteristics of Calycanthus chinensis and Chimonanthus praecox. Photosynthetica 45:601–605

    CAS  Google Scholar 

  • Meents AK, Chen S-P, Reichelt M, Lu H-H, Bartram S, Yeh K-W, Mithöfer A (2019) Volatile DMNT systemically induces jasmonate-independent direct anti-herbivore defense in leaves of sweet potato (Ipomoea batatas) plants. Sci Rep 9:1–13

    CAS  Google Scholar 

  • Mensah RA, Li D, Liu F, Tian N, Sun X, Hao X, Lai Z, Cheng C (2020) Versatile Piriformospora indica and its potential applications in horticultural crops. Plant J Hortic. https://doi.org/10.1016/j.hpj.2020.01.002

    Article  Google Scholar 

  • Michal Johnson J, Sherameti I, Ludwig A, Nongbri PL, Sun C, Lou B, Varma A, Oelmüller R (2011) Protocols for Arabidopsis thaliana and Piriformospora indica co-cultivation—A model system to study plant beneficial traits. Endocytobiosis Cell Res 21:101–113

    Google Scholar 

  • Moreira B, Mendes F, Mendes I, Paula T, Junior PP, Salomão L, Stürmer S, Otoni W, Kasuya M (2015) The interaction between arbuscular mycorrhizal fungi and Piriformospora indica improves the growth and nutrient uptake in micropropagation-derived pineapple plantlets. Sci Hortic 197:183–192

    CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Pradhan D, Archana M, James G, Chakrabarti S, Vimala B, Naskar S, Sahoo B, Samal S (2015) High starch, beta carotene and anthocyanin rich sweet potato: ascent to future food and nutrition security in coastal and backward areas. Int J Trop Agric 33:397–400

    Google Scholar 

  • Senthilkumar R, Yeh K-W (2012) Multiple biological functions of sporamin related to stress tolerance in sweet potato (Ipomoea batatas Lam). Biotechnol Adv 30:1309–1317

    CAS  PubMed  Google Scholar 

  • Šesták Z (1966) Limitations for finding a linear relationship between chlorophyll content and photosynthetic activity. Biol Plant 8:336

    Google Scholar 

  • Shoukat E, Abideen Z, Ahmed MZ, Gulzar S, Nielsen BL (2019) Changes in growth and photosynthesis linked with intensity and duration of salinity in Phragmites karka. Environ Exp Bot 162:504–514

    CAS  Google Scholar 

  • Stefanov M, Yotsova E, Rashkov G, Ivanova K, Markovska Y, Apostolova EL (2016) Effects of salinity on the photosynthetic apparatus of two Paulownia lines. Plant Physiol Biochem 101:54–59

    CAS  PubMed  Google Scholar 

  • Sumanta N, Haque CI, Nishika J, Suprakash R (2014) Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res J Chem Sci 2231:606X

    Google Scholar 

  • Tsai H-J, Shao K-H, Chan M-T, Cheng C-P, Yeh K-W, Oelmüller R, Wang S-J (2020) Piriformospora indica symbiosis improves water stress tolerance of rice through regulating stomata behavior and ROS scavenging systems. Plant Signal Behav 15:1722447

    PubMed  Google Scholar 

  • Veronica N, Subrahmanyam D, Kiran TV, Yugandhar P, Bhadana V, Padma V, Jayasree G, Voleti S (2017) Influence of low phosphorus concentration on leaf photosynthetic characteristics and antioxidant response of rice genotypes. Photosynthetica 55:285–293

    CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, Von Wettstein D (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391

    CAS  PubMed  Google Scholar 

  • Wang S-J, Lan Y-C, Chen S-F, Chen Y-M, Yeh K-W (2002) Wound-response regulation of the sweet potato sporamin gene promoter region. Plant Mol Biol 48:223–231

    CAS  PubMed  Google Scholar 

  • Wang SQ, Tang J, Hu KD, Huang ZQ, Yang F, Zhang HY, Hu LY, Li YH, Yao GF, Zhang H (2019) Antioxidative system in sweet potato root is activated by low-temperature storage. Sci. Food Agric 99:3824–3833

    CAS  Google Scholar 

  • Wintermans J, De Mots A (1965) Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biophys Acta 109:448–453

    CAS  Google Scholar 

  • Wu A, Hammer GL, Doherty A, von Caemmerer S, Farquhar GD (2019) Quantifying impacts of enhancing photosynthesis on crop yield. Nat Plants 5:380–388

    PubMed  Google Scholar 

  • Ye W, Jiang J, Lin Y, Yeh K-W, Lai Z, Xu X, Oelmüller R (2019) Colonisation of Oncidium orchid roots by the endophyte Piriformospora indica restricts Erwinia chrysanthemi infection, stimulates accumulation of NBS-LRR resistance gene transcripts and represses their targeting micro-RNAs in leaves. BMC Plant Biol 19:1–16

    Google Scholar 

  • Yeh K-W, Chen J-C, Lin M-I, Chen Y-M, Lin C-Y (1997) Functional activity of sporamin from sweet potato (Ipomoea batatas Lam.): a tuber storage protein with trypsin inhibitory activity. Plant Mol Biol 33:565–570

    CAS  PubMed  Google Scholar 

  • Yong B, Wang X, Xu P, Zheng H, Fei X, Hong Z, Ma Q, Miao Y, Yuan X, Jiang Y (2017) Isolation and abiotic stress resistance analyses of a catalase gene from Ipomoea batatas (L.) Lam. Biomed Res Int 2017:2017

    Google Scholar 

  • Zhong Y, Ahmed S, Deng G, Fan W, Zhang P, Wang H (2019) Improved insect resistance against Spodoptera litura in transgenic sweetpotato by overexpressing Cry1Aa toxin. Plant Cell Rep 38:1439–1448

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We really thank Prof. Dr. Ralf Oelmüller (Friedrich-Schiller-University Jena) for providing P. indica, Dr. Si-xin Qiu and Dr. Yong-xiang Qiu (Fujian Academy of Agricultural Sciences) for providing sweet potato Fucaishu 18.

Funding

This research was funded by the Fujian Provincial Department of Science and Technology, China (Grant 2017NZ0002-2, 2018N0069 and 2020N0048).

Author information

Authors and Affiliations

Authors

Contributions

QL and S-PC conceived and designed the research. QL, Y-WK, K-HL, and WH performed the experiments. QL and CD analyzed the data. K-WY and S-PC wrote the manuscript. All authors have read and agreed to the final version of the manuscript.

Corresponding author

Correspondence to Shi-Peng Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Howard S. Judelson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1—Table. S1 Primer list (PDF 8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Kuo, YW., Lin, KH. et al. Piriformospora indica colonization increases the growth, development, and herbivory resistance of sweet potato (Ipomoea batatas L.). Plant Cell Rep 40, 339–350 (2021). https://doi.org/10.1007/s00299-020-02636-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-020-02636-7

Keywords

Navigation