Ahmed I, Sarazin A, Bowler C, Colot V, Quesneville H (2011) Genome-wide evidence for local DNA methylation spreading from small RNA-targeted sequences in Arabidopsis. Nucleic Acids Res 39(16):6919–6931
CAS
PubMed
PubMed Central
Google Scholar
Akakpo R, Carpentier MC, Hsing YI, Panaud O (2020) The impact of transposable elements on the structure, evolution and function of the rice genome. New Phytol
Alaux M, Rogers J, Letellier T, Flores R, Alfama F, Pommier C, Mohellibi N, Durand S, Kimmel E, Michotey C et al (2018) Linking the International Wheat Genome Sequencing Consortium bread wheat reference genome sequence to wheat genetic and phenomic data. Genome Biol 19(1):111
PubMed
PubMed Central
Google Scholar
Andorf CM, Cannon EK, Portwood JL, Gardiner JM, Harper LC, Schaeffer ML, Braun BL, Campbell DA, Vinnakota AG, Sribalusu VV et al (2016) MaizeGDB update: new tools, data and interface for the maize model organism database. Nucleic Acids Res 44(D1):D1195–D1201
CAS
PubMed
Google Scholar
Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, Pozniak CJ, Choulet F, Distelfeld A, Poland J et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361(6403):eaar7191
PubMed
Google Scholar
Arensburger P, Piégu B, Bigot Y (2016) The future of transposable element annotation and their classification in the light of functional genomics—what we can learn from the fables of Jean de la Fontaine? Mob Genet Elem 6(6):e1256852
Google Scholar
Badouin H, Gouzy J, Grassa CJ, Murat F, Staton SE, Cottret L, Lelandais-Briére C, Owens GL, Carrére S, Mayjonade B et al (2017) The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546(7656):148
CAS
PubMed
Google Scholar
Baucom RS, Estill JC, Chaparro C, Upshaw N, Jogi A, Deragon J-M, Westerman RP, SanMiguel PJ, Bennetzen JL (2009) Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet 5(11):e1000732
PubMed
PubMed Central
Google Scholar
Berthelier J, Casse N, Daccord N, Jamilloux V, Saint-Jean B, Carrier G (2018) A transposable element annotation pipeline and expression analysis reveal potentially active elements in the microalga Tisochrysis lutea. BMC Genom 19(1):378
Google Scholar
Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, Imbeault M, Izsvak Z, Levin HL, Macfarlan TS et al (2018) Ten things you should know about transposable elements. Genome Biol 19(1):199
CAS
PubMed
PubMed Central
Google Scholar
Bureau TE, Wessler SR (1994a) Mobile inverted-repeat elements of the tourist family are associated with the genes of many cereal grasses. Proc Natl Acad Sci 91(4):1411–1415
CAS
PubMed
Google Scholar
Bureau TE, Wessler SR (1994b) Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6(6):907–916
CAS
PubMed
PubMed Central
Google Scholar
Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P, Reforgiato-Recupero G, Martin C (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24(3):1242–1255
CAS
PubMed
PubMed Central
Google Scholar
Cambiagno DA, Nota F, Zavallo D, Rius S, Casati P, Asurmendi S, Alvarez ME (2018) Immune receptor genes and pericentromeric transposons as targets of common epigenetic regulatory elements. Plant J 96(6):1178–1190
CAS
PubMed
Google Scholar
Chalopin D, Naville M, Plard F, Galiana D, Volff J-N (2015) Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol Evol 7(2):567–580
CAS
PubMed
PubMed Central
Google Scholar
Consortium PGS et al (2011) Genome sequence and analysis of the tuber crop potato. Nature 475(7355):189
Google Scholar
Copetti D, Zhang J, El Baidouri M, Gao D, Wang J, Barghini E, Cossu RM, Angelova A, Maldonado LCE, Roffler S, Ohyanagi H, Wicker T, Fan C, Zuccolo A, Chen M, Costa de Oliveria A, Han B, Henry R, Hsing Y-I, Kurata N, Wang W, Jackson SA, Panaud O, Wing RA (2015) RiTE database: a resource database for genus-wide rice genomics and evolutionary biology. BMC Genom 16:538
Google Scholar
Cowley M, Oakey RJ (2013) Transposable elements re-wire and fine-tune the transcriptome. PLoS Genet 9(1):e1003234
CAS
PubMed
PubMed Central
Google Scholar
Crescente JM, Zavallo D, Helguera M, Vanzetti LS (2018) Mite tracker: an accurate approach to identify miniature inverted-repeat transposable elements in large genomes. BMC Bioinform 19(1):348
CAS
Google Scholar
Devaux A, Kromann P, Ortiz O (2014) Potatoes for sustainable global food security. Potato Res 57(3–4):185–199
Google Scholar
Du J, Grant D, Tian Z, Nelson RT, Zhu L, Shoemaker RC, Ma J (2010) SoyTEdb: a comprehensive database of transposable elements in the soybean genome. BMC Genom 11(1):113
Google Scholar
Dubin MJ, Scheid OM, Becker C (2018) Transposons: a blessing curse. Curr Opin Plant Biol 42:23–29
CAS
PubMed
Google Scholar
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797
CAS
PubMed
PubMed Central
Google Scholar
El Baidouri M, Kim KD, Abernathy B, Arikit S, Maumus F, Panaud O, Meyers BC, Jackson SA (2015) A new approach for annotation of transposable elements using small rna mapping. Nucleic Acids Res 43(13):e84–e84
PubMed
PubMed Central
Google Scholar
Ellinghaus D, Kurtz S, Willhoeft U (2008) LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinform 9(1):18
Google Scholar
Flutre T, Duprat E, Feuillet C, Quesneville H (2011) Considering transposable element diversification in de novo annotation approaches. PloS One 6(1):e16526. https://doi.org/10.1371/journal.pone.0016526
CAS
Article
PubMed
PubMed Central
Google Scholar
Gagliardi D, Cambiagno DA, Arce AL, Tomassi AH, Giacomelli JI, Ariel FD, Manavella PA (2019) Dynamic regulation of chromatin topology and transcription by inverted repeat-derived small RNAs in sunflower. Proc Natl Acad Sci 116(35):17578–17580
CAS
PubMed
Google Scholar
Gao D, Li Y, Do Kim K, Abernathy B, Jackson SA (2016) Landscape and evolutionary dynamics of terminal repeat retrotransposons in miniature in plant genomes. Genome Biol 17(1):7
PubMed
PubMed Central
Google Scholar
Gremme G, Steinbiss S, Kurtz S (2013) Genometools: a comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Trans Comput Biol Bioinform TCBB 10(3):645–656
Google Scholar
Heitkam T, Holtgrawe D, Dohm JC, Minoche AE, Himmelbauer H, Weisshaar B, Schmidt T (2014) Profiling of extensively diversified plant lines reveals distinct plant-specific subclades. Plant J 79(3):385–397
CAS
PubMed
Google Scholar
Hirsch CD, Springer NM (2017) Transposable element influences on gene expression in plants. BBA Gene Regul Mech 1860(1):157–165
CAS
Google Scholar
Hoede C, Arnoux S, Moisset M, Chaumier T, Inizan O, Jamilloux V, Quesneville H (2014) PASTEC: an automatic transposable element classification tool. PLoS One 9(5):e91929
PubMed
PubMed Central
Google Scholar
Hoen DR, Hickey G, Bourque G, Casacuberta J, Cordaux R, Feschotte C, Fiston-Lavier A-S, Hua-Van A, Hubley R, Kapusta A et al (2015) A call for benchmarking transposable element annotation methods. Mob DNA 6(1):13
PubMed
PubMed Central
Google Scholar
Hosaka A, Kakutani T (2018) Transposable elements, genome evolution and transgenerational epigenetic variation. Curr Opin Genet Dev 49:43–48
CAS
PubMed
Google Scholar
Judd J, Feschotte C (2018) Gene expression: transposons take remote control. elife 7:e40921
PubMed
PubMed Central
Google Scholar
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110(1–4):462–467
CAS
PubMed
Google Scholar
Kamoun C, Payen T, Hua-Van A, Filée J (2013) Improving prokaryotic transposable elements identification using a combination of de novo and profile hmm methods. BMC Genom 14(1):700
CAS
Google Scholar
Kloosterman B, Abelenda JA, Gomez MDMC, Oortwijn M, de Boer JM, Kowitwanich K, Horvath BM, van Eck HJ, Smaczniak C, Prat S et al (2013) Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature 495(7440):246
CAS
PubMed
Google Scholar
Kuang H, Padmanabhan C, Li F, Kamei A, Bhaskar PB, Ouyang S, Jiang J, Buell CR, Baker B (2009) Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: new functional implications for MITEs. Genome Res 19(1):42–56
CAS
PubMed
PubMed Central
Google Scholar
Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33(1):479–532
CAS
PubMed
Google Scholar
Luo M-C, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR, Huo N, Zhu T, Wang L, Wang Y et al (2017) Genome sequence of the progenitor of the wheat D genome aegilops tauschii. Nature 551(7681):498
CAS
PubMed
Google Scholar
Macas J, Meszaros T, Nouzova M (2002) PlantSat: a specialized database for plant satellite repeats. Bioinformatics 18(1):28–35
CAS
PubMed
Google Scholar
Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN, Ross-Ibarra J, Springer NM (2015) Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genet 11(1):e1004915
PubMed
PubMed Central
Google Scholar
Mao H, Wang H (2016) Sine_scan: an efficient tool to discover short interspersed nuclear elements (SINEs) in large-scale genomic datasets. Bioinformatics 33(5):743–745
PubMed Central
Google Scholar
Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461(7267):1135
CAS
PubMed
Google Scholar
McCarthy EM, McDonald JF (2003) LTR_STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics 19(3):362–367
CAS
PubMed
Google Scholar
Mehra M, Gangwar I, Shankar R (2015) A deluge of complex repeats: the Solanum genome. PLoS One 10(8):e0133962
PubMed
PubMed Central
Google Scholar
Momose M, Abe Y, Ozeki Y (2010) Miniature inverted-repeat transposable elements of stowaway are active in potato. Genetics 186(1):59–66
CAS
PubMed
PubMed Central
Google Scholar
Nussbaumer T, Martis MM, Roessner SK, Pfeifer M, Bader KC, Sharma S, Gundlach H, Spannagl M (2012) MIPS PlantsDB: a database framework for comparative plant genome research. Nucleic Acids Res 41(D1):D1144–D1151
PubMed
PubMed Central
Google Scholar
Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497(7451):579
CAS
PubMed
Google Scholar
Ong-Abdullah M, Ordway JM, Jiang N, Ooi S-E, Kok S-Y, Sarpan N, Azimi N, Hashim AT, Ishak Z, Rosli SK et al (2015) Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525(7570):533
CAS
PubMed
PubMed Central
Google Scholar
Ouyang S, Buell CR (2004) The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res 32(suppl 1):D360–D363
CAS
PubMed
PubMed Central
Google Scholar
Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457(7229):551
CAS
PubMed
Google Scholar
Paz RC, Kozaczek ME, Rosli HG, Andino NP, Sanchez-Puerta MV (2017) Diversity, distribution and dynamics of full-length Copia and Gypsy LTR retroelements in Solanum lycopersicum. Genetica 145(4–5):417–430
CAS
PubMed
Google Scholar
Platt RN, Blanco-Berdugo L, Ray DA (2016) Accurate transposable element annotation is vital when analyzing new genome assemblies. Genome Biol Evol 8(2):403–410
CAS
PubMed
PubMed Central
Google Scholar
Price AL, Jones NC, Pevzner PA (2005) De novo identification of repeat families in large genomes. Bioinformatics 21(suppl_1):i351–i358
CAS
PubMed
Google Scholar
Quadrana L, Almeida J, Asís R, Duffy T, Dominguez PG, Bermúdez L, Conti G, Da Silva JVC, Peralta IE, Colot V et al (2014) Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nat Commun 5:4027
Google Scholar
Quadrana L, Etcheverry M, Gilly A, Caillieux E, Madoui MA, Guy J, Aury JM (2019) Transposition favors the generation of large effect mutations that may facilitate rapid adaptation. Nat Commun 10(1):3421
PubMed
PubMed Central
Google Scholar
Roessler K, Bousios A, Meca E, Gaut BS (2018) Modeling interactions between transposable elements and the plant epigenetic response: a surprising reliance on element retention. Genome Biol Evol 10(3):803–815
CAS
PubMed
PubMed Central
Google Scholar
Saze H, Kitayama J, Takashima K, Miura S, Harukawa Y, Ito T, Kakutani T (2013) Mechanism for full-length RNA processing of Arabidopsis genes containing intragenic heterochromatin. Nat Commun 4:2301
PubMed
Google Scholar
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115
CAS
PubMed
Google Scholar
Sigman MJ, Slotkin RK (2016) The first rule of plant transposable element silencing: location, location, location. Plant Cell 28(2):304–313
CAS
PubMed
PubMed Central
Google Scholar
Smit AFA, Hubley R, Green P (1996–2010) RepeatMasker Open-3.0
Staton E (2018) Tephra: a tool for discovering transposable elements and describing patterns of genome evolution. https://github.com/sestaton/tephra
Sultana T, Zamborlini A, Cristofari G, Lesage P (2017) Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet 18(5):292
CAS
PubMed
Google Scholar
Sun S, Zhou Y, Chen J, Shi J, Zhao H, Zhao H, Song W, Zhang M, Cui Y, Dong X et al (2018) Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat Genet 50(9):1289
CAS
PubMed
Google Scholar
Vicient CM, Casacuberta JM (2017) Impact of transposable elements on polyploid plant genomes. Ann Bot 120(2):195–207
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Weigel D, Smith LM (2013) Transposon variants and their effects on gene expression in Arabidopsis. PLoS Genet 9(2):e1003255
CAS
PubMed
PubMed Central
Google Scholar
Wicker T, Matthews DE, Keller B (2002) TREP: a database for Triticeae repetitive elements. Trends Plant Sci 7(12):561–562
CAS
Google Scholar
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973
CAS
PubMed
Google Scholar
Xiao H, Jiang N, Schaffner E, Stockinger EJ, Van Der Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319(5869):1527–1530
CAS
PubMed
Google Scholar
Xiong W, He L, Lai J, Dooner HK, Du C (2014) HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes. In: Proceedings of the National Academy of Sciences, p 201410068
Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J (2004) Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet 109(8):1677–1686
CAS
PubMed
Google Scholar
Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591
CAS
PubMed
Google Scholar
Yang L, Bennetzen JL (2009) Distribution, diversity, evolution, and survival of Helitrons in the maize genome. Proc Natl Acad Sci 106(47):19922–19927
CAS
PubMed
Google Scholar