Green synthesis of silver nanoparticles using Indian Belladonna extract and their potential antioxidant, anti-inflammatory, anticancer and larvicidal activities

Abstract

Key message

Atropa acuminata aqueous leaf extract biosynthesized silver nanoparticles showed strong antioxidant, anticancerous (HeLa cells) and anti-inflammatory activities. Besides, this bio syn-AgNP also proved effective against mosquito vectors causing malaria, dengue and filariasis.

Abstract

Present study highlights eco-friendly and sustainable approach for the synthesis of silver nanoparticles (AgNP) using aqueous leaf extract of A. acuminata, a critically endangered medicinal herb. The addition of 1 mM silver nitrate to aqueous leaf extract resulted in the synthesis of AgNP when solution was heated at 60 °C for 30 min at pH 7. Absorption band at 428 nm, as shown by UV–Vis spectroscopy confirmed the synthesis of AgNP. XRD patterns revealed the crystalline nature of AgNP and TEM analysis showed that most of the nanoparticles were spherical in shape. Zeta potential of AgNP was found to be − 33.5 mV which confirmed their high stability. FT-IR investigations confirmed the presence of different functional groups involved in the reduction and capping of AgNP. The synthesized AgNP showed effective DPPH (IC50—16.08 µg/mL), H2O2 (IC50—25.40 µg/mL), and superoxide (IC50—21.12 µg/mL) radical scavenging activities. These plant-AgNP showed significant inhibition of albumin denaturation (IC50—12.98 µg/mL) and antiproteinase activity (IC50—18.401 µg/mL). Besides, biosynthesized AgNP were found to have strong inhibitory effect against a cervical cancer (HeLa) cell line (IC50—5.418 µg/mL) as well as larvicidal activity against 3rd instar larvae of Anopheles stephensi (LC50—18.9 ppm, LC90—40.18 ppm), Aedes aegypti (LC50—12.395 ppm, LC90—36.34 ppm) and Culex quinquefasciatus (LC50—17.76 ppm, LC90—30.82 ppm) and were found to be non-toxic against normal cell line (HEK 293), and a non-target organism (Mesocyclops thermocyclopoides). This is the first report on the synthesis of AgNP using aqueous leaf extract of A. acuminata, validating their strong therapeutic potential.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abdelghany TM, Al-Rajhi AM, Al Abboud MA, Alawlaqi MM, Magdah AG, Helmy EA, Mabrouk AS (2018) Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review. Bionanoscience 8:5–16. https://doi.org/10.1007/s12668-017-0413-3

    Article  Google Scholar 

  2. Barabadi H, Vahidi H, Kamali KD, Rashedi M, Saravanan M (2019) Antineoplastic biogenic silver nanomaterials to combat cervical cancer: a novel approach in cancer therapeutics. J Clust Sci. https://doi.org/10.1007/s10876-019-01697-3

    Article  Google Scholar 

  3. Benelli G, Govindarajan M (2017) Green-synthesized mosquito oviposition attractants and ovicides: towards a nanoparticle-based “lure and kill” approach? J Clust Sci 28:287–308. https://doi.org/10.1007/s10876-016-1088-6

    CAS  Article  Google Scholar 

  4. Bethu MS, Netala VR, Domdi L, Tartte V, Janapala VR (2018) Potential anticancer activity of biogenic silver nanoparticles using leaf extract of Rhynchosia suaveolens: an insight into the mechanism. Artif Cells Nanomed Biotechnol 46:104–114. https://doi.org/10.1080/21691401.2017.1414824

    CAS  Article  PubMed  Google Scholar 

  5. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    CAS  Article  Google Scholar 

  6. Chang CC, Yang MH, Wen HM, Chern JC (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10:178–182

    CAS  Google Scholar 

  7. Chung KT, Wong TY, Wei CI, Huang YW, Lin Y (1998) Tannins and human health: a review. Crit Rev Food Sci Nutr 38:421–464. https://doi.org/10.1080/10408699891274273

    CAS  Article  PubMed  Google Scholar 

  8. Crisponi G, Nurchi VM, Lachowicz JI, Peana M, Medici S, Zoroddu MA (2017) Toxicity of nanoparticles: etiology and mechanisms. In: Antimicrobial Nanoarchitectonics (pp 511–546). Elsevier. https://doi.org/10.1016/B978-0-323-52733-0.00018-5

  9. Das P, Ghosal K, Jana NK, Mukherjee A, Basak P (2019) Green synthesis and characterization of silver nanoparticles using belladonna mother tincture and its efficacy as a potential antibacterial and anti-inflammatory agent. Mater Chem Phys 228:310–317. https://doi.org/10.1016/j.matchemphys.2019.02.064

    CAS  Article  Google Scholar 

  10. Dong F, Valsami-Jones E, Kreft JU (2016) New, rapid method to measure dissolved silver concentration in silver nanoparticle suspensions by aggregation combined with centrifugation. J Nanoparticle Res 18:259. https://doi.org/10.1007/s11051-016-3565-0

    CAS  Article  Google Scholar 

  11. Flores-Lopez LZ, Espinoza-Gomez H, Somanathan R (2019) Silver nanoparticles: electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review J Appl Toxicol 39:16–26. https://doi.org/10.1002/jat.3654

    CAS  Article  PubMed  Google Scholar 

  12. Gunathilake KDPP, Ranaweera KKDS, Rupasinghe HP (2018) In vitro anti-inflammatory properties of selected green leafy vegetables. Biomedicines 6:107. https://doi.org/10.3390/biomedicines6040107

    CAS  Article  PubMed Central  Google Scholar 

  13. Jaffe RJ, Novakovic V, Peselow ED (2013) Scopolamine as an antidepressant: a systematic review. Clin Neuropharmacol 1:24–26. https://doi.org/10.3390/biomedicines6040107

    CAS  Article  Google Scholar 

  14. Jain S, Mehata MS (2017) Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci Rep 7:15867. https://doi.org/10.1038/s41598-017-15724-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Khalil MM, Ismail EH, El-Baghdady KZ, Mohamed D (2014) Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab J Chem 7:1131–1139. https://doi.org/10.1016/j.arabjc.2013.04.007

    CAS  Article  Google Scholar 

  16. Khorrami S, Zarrabi A, Khaleghi M, Danaei M, Mozafari MR (2018) Selective cytotoxicity of green synthesized silver nanoparticles against MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomed 13:8013–8024. https://doi.org/10.2147/IJN.S189295

    CAS  Article  Google Scholar 

  17. Kumar D, Kumar G, Agrawal V (2018a) Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall. bark extract and their larvicidal activity against dengue and filariasis vectors. Parasitol Res 117:377–389. https://doi.org/10.1007/s00436-017-5711-8

    Article  PubMed  Google Scholar 

  18. Kumar D, Kumar G, Das R, Agrawal V (2018b) Strong larvicidal potential of silver nanoparticles (AgNPs) synthesized using Holarrhena antidysenterica (L.) Wall. bark extract against malarial vector Anopheles stephensi. Liston Process Saf Environ 116:137–148. https://doi.org/10.1016/j.psep.2018.02.001

    CAS  Article  Google Scholar 

  19. Kumar RS, Rajkapoor B, Perumal P (2012) Antioxidant activities of Indigofera cassioides Rottl. Ex. DC. using various in vitro assay models. Asian Pac J Trop 2:256–261. https://doi.org/10.1016/S2221-1691(12)60019-7

    CAS  Article  Google Scholar 

  20. Mehmood A, Malik A, Anis I, Khan PM, Riaz M, Makhmoor T, Choudhary MI (2002) Highly oxygenated triterpenes from the roots of Atropa acuminata. Nat Prod Lett 16:371–376. https://doi.org/10.1080/10575630290033097

    CAS  Article  PubMed  Google Scholar 

  21. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    CAS  Article  Google Scholar 

  22. Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Kumar PM, Subramaniam J, Suresh U (2015) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 114:2243–2253. https://doi.org/10.1007/s00436-015-4417-z

    Article  PubMed  Google Scholar 

  23. Naz R, Ayub H, Nawaz S, Islam ZU, Yasmin T, Bano A, Wakeel A, Zia S, Roberts TH (2017) Antimicrobial activity, toxicity and anti-inflammatory potential of methanolic extracts of four ethnomedicinal plant species from Punjab, Pakistan. BMC Complement Altern Med 17:302. https://doi.org/10.1186/s12906-017-1815-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Netala VR, Kotakadi VS, Nagam V, Bobbu P, Ghosh SB, Tartte V (2015) First report of biomimetic synthesis of silver nanoparticles using aqueous callus extract of Centella asiatica and their antimicrobial activity. Appl Nanosci 5:801–807. https://doi.org/10.1007/s13204-014-0374-6

    CAS  Article  Google Scholar 

  25. Nindawat S, Agrawal V (2019) Fabrication of silver nanoparticles using Arnebia hispidissima (Lehm.) A. DC. root extract and unravelling their potential biomedical applications. Artif Cells Nanomed Biotechnol 47:166–180. https://doi.org/10.1080/21691401.2018.1548469

    CAS  Article  PubMed  Google Scholar 

  26. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci. https://doi.org/10.1017/jns.2016.41

    Article  PubMed  PubMed Central  Google Scholar 

  27. Patel A, Patel A, Patel A, Patel NM (2010) Determination of polyphenols and free radical scavenging activity of Tephrosia purpurea linn leaves (Leguminosae). Pharmacogn Res 2:152. https://doi.org/10.4103/0974-8490.65509

    CAS  Article  Google Scholar 

  28. Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110:1815–1822. https://doi.org/10.1007/s00436-011-2704-x

    Article  PubMed  Google Scholar 

  29. Patil MP, Kim GD (2017) Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol 101:79–92. https://doi.org/10.1007/s00253-016-8012-8

    CAS  Article  PubMed  Google Scholar 

  30. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A (2017) Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev 8416763:13. https://doi.org/10.1155/2017/8416763

    CAS  Article  Google Scholar 

  31. Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341. https://doi.org/10.1006/abio.1999.4019

    CAS  Article  PubMed  Google Scholar 

  32. Rahman K, Khan SU, Fahad S, Shinwari ZK, Khan D, Kamal S, Ullah I, Anjum SI, Man S, Khan AJ, Khan WU (2018) In vitro biological screening of a critically endangered medicinal plant, Atropa acuminata Royle Ex Lindl of North Western Himalaya. Sci Rep 1:11028. https://doi.org/10.1038/s41598-018-29231-x

    CAS  Article  Google Scholar 

  33. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radical Bio Med 49:603–1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006

    CAS  Article  Google Scholar 

  34. Saini H, Yadav R, Kumar D, Kumar G, Agrawal V (2019) Cullen corylifolium (L.) Medik. Seed extract, an excellent system for fabrication of silver nanoparticles and their multipotency validation against different mosquito vectors and human cervical cancer cell line. J Clust Sci 2019:1–15. https://doi.org/10.1007/s10876-019-01630-8

    CAS  Article  Google Scholar 

  35. Selvan DA, Mahendiran D, Kumar RS, Rahiman AK (2018) Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: phytochemical, antioxidant and in vitro cytotoxicity studies. J Photochem Photobiol B 180:243–252. https://doi.org/10.1016/j.jphotobiol.2018.02.014

    CAS  Article  Google Scholar 

  36. Sharma B, Deswal R (2018) Single pot synthesized gold nanoparticles using Hippophae rhamnoides leaf and berry extract showed shape-dependent differential nanobiotechnological applications. Artif Cells Nanomed Biotechnol 46:408–418. https://doi.org/10.1080/2169401.2018.1458034

    CAS  Article  PubMed  Google Scholar 

  37. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 14:152–178. https://doi.org/10.1016/S0076-6879(99)99017-1

    Article  Google Scholar 

  38. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  39. Tali BA, Ganie AH, Nawchoo IA, Wani AA, Reshi ZA (2015) Assessment of threat status of selected endemic medicinal plants using IUCN regional guidelines: a case study from Kashmir Himalaya. J Nat Conserv 23:80–89. https://doi.org/10.1016/j.jnc.2014.06.004

    Article  Google Scholar 

  40. Tripathi D, Modi A, Narayan G, Rai SP (2019) Green and cost effective synthesis of silver nanoparticles from endangered medicinal plant Withania coagulans and their potential biomedical properties. Mater Sci Eng C 100:152–164. https://doi.org/10.1016/j.msec.2019.02.113

    CAS  Article  Google Scholar 

  41. Truong DH, Nguyen DH, Ta NTA, Bui AV, Do TH, Nguyen HC (2019) Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J Food Qual 8178294:9. https://doi.org/10.1155/2019/8178294

    CAS  Article  Google Scholar 

  42. Ullah Z, Ijaz A, Mughal TK, Zia K (2018) Larvicidal activity of medicinal plant extracts against Culex quinquefasciatus Say. (Culicidae, Diptera). Int J Mosq Res 5:47–51

    Google Scholar 

  43. Verma A, Mehata MS (2016) Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. J Radiat Res Appl Sci 9:109–115. https://doi.org/10.1016/j.jrras.2015.11.001

    CAS  Article  Google Scholar 

  44. Vijayan R, Joseph S, Mathew B (2018) Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties. Artif Cells Nanomed Biotechnol 46:861–871. https://doi.org/10.1080/21691401.2017.1345930

    CAS  Article  PubMed  Google Scholar 

  45. World Health Organization (1981) Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides (No. WHO/VBC/81.807). Geneva: World Health Organization

  46. Yadav R, Saini H, Kumar D, Pasi S, Agrawal V (2019) Bioengineering of Piper longum L. extract mediated silver nanoparticles and their potential biomedical applications. Mater Sci Eng C 104:109984. https://doi.org/10.1016/j.msec.2019.109984

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Science and Engineering Research Board, Government of India, New Delhi for sanction of Major Research Project (VA vide EMR/2016/001673) to Veena Agrawal and Department of Science and Technology for Promotion University Research and Scientific Excellence (DST-PURSE) Grant. Shubhra Rajput is grateful to DU-UGC for awarding UGC non-NET fellowship. Authors acknowledge University Science Instrumentation Centre, D.U. for providing facilities for successful completion of work and Sophisticated Analytical Instrumentation Facility (SAIF), AIIMS for TEM and DLS analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Veena Agrawal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rajput, S., Kumar, D. & Agrawal, V. Green synthesis of silver nanoparticles using Indian Belladonna extract and their potential antioxidant, anti-inflammatory, anticancer and larvicidal activities. Plant Cell Rep 39, 921–939 (2020). https://doi.org/10.1007/s00299-020-02539-7

Download citation

Keywords

  • Atropa acuminata
  • Atropine
  • Albumin denaturation
  • HeLa cell line
  • Mosquitocidal