Skip to main content

Advertisement

Log in

SmPPT, a 4-hydroxybenzoate polyprenyl diphosphate transferase gene involved in ubiquinone biosynthesis, confers salt tolerance in Salvia miltiorrhiza

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

SmPPT, which encodes 4-hydroxybenzoate polyprenyl diphosphate transferase involved in ubiquinone biosynthesis, confers salt tolerance to S. miltiorrhiza through enhancing the activities of POD and CAT to scavenge ROS.

Abstract

Ubiquinone (UQ), also known as coenzyme Q (CoQ), is a key electron transporter in the mitochondrial respiratory system. UQ is composed of a benzene quinone ring and a polyisoprenoid side chain. Attachment of polyisoprenoid side chain to the benzene quinone ring is a rate-limiting step catalyzed by 4-hydroxybenzoate polyprenyl diphosphate transferase (PPT). So far, only a few plant PPT-encoding genes have been functionally analyzed. Through genome-wide analysis and subsequent molecular cloning, a PPT-encoding gene, termed SmPPT, was identified from an economically and academically important medicinal model plant, Salvia miltiorrhiza. SmPPT contained many putative cis-elements associated with abiotic stresses in the promoter region and were responsive to PEG-6000 and methyl jasmonate treatments. The deduced SmPPT protein contains the PT_UbiA conserved domain of polyprenyl diphosphate transferase and an N-terminal mitochondria transit peptide. Transient expression assay of SmPPT-GFP fusion protein showed that SmPPT was mainly localized in the mitochondria. SmPPT could functionally complement coq2 mutation and catalyzed UQ6 production in yeast cells. Overexpression of SmPPT increased UQ production and enhanced salt tolerance in S. miltiorrhiza. Under salinity stress conditions, transgenic plants accumulated less H2O2 and malondialdehyde and exhibited higher peroxidase (POD) and catalase (CAT) activities compared with wild-type plants. It indicates that SmPPT confers salt tolerance to S. miltiorrhiza at least partially through enhancing the activities of POD and CAT to scavenge ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adly AAM (2002) Oxidative stress and disease: an updated review. Res J Immunol 3:129–145

    Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araújo WL, Ishizaki K, Nunes-Nesi A, Larson TR, Tohge T, Krahnert I, Witt S, Obata T, Schauer N, Graham IA, Leaver CJ, Fernie AR (2010) Identification of the 2-hydroxyglutarate and isovaleryl-CoA dehydrogenases as alternative electron donors linking lysine catabolism to the electron transport chain of Arabidopsis mitochondria. Plant Cell 22:1549–1563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ashby MN, Kutsunai SY, Ackerman S, Tzagoloff A, Edwards PA (1992) COQ2 is a candidate for the structural gene encoding para-hydroxybenzoate: polyprenyltransferase. J Bio Chem 267:4128–4136

    Article  CAS  Google Scholar 

  • Avelange-Macherel MH, Joyard J (1998) Cloning and functional expression of AtCOQ3, the Arabidopsis homologue of the yeast COQ3 gene, encoding a methyltransferase from plant mitochondria involved in ubiquinone biosynthesis. Plant J 14:203–213

    Article  CAS  PubMed  Google Scholar 

  • Bjellqvist B, Basse B, Olsen E, Celis JE (1994) Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. Electrophoresis 15:529–539

    Article  CAS  PubMed  Google Scholar 

  • Burge CB, Karlin S (1998) Finding the genes in genomic DNA. Curr Opin Struct Biol 8:346–354

    Article  CAS  PubMed  Google Scholar 

  • Büssis D, Heineke D (1998) Acclimation of potato plants to polyethylene glycol-induced water deficit II. Contents and subcellular distribution of organic solutes. J Exp Bot 49:1361–1370

    Article  Google Scholar 

  • Chang J, Fu X, An L, Chen T (2006) Properties of cellular ubiquinone and stress-resistance in suspension- cultured cells of Chorispora bungeana during early chilling. Environ Exp Bot 57:116–122

    Article  CAS  Google Scholar 

  • Cui G, Huang L, Tang X, Zhao J (2011) Candidate genes involved in tanshinone biosynthesis in hairy roots of Salvia miltiorrhiza revealed by cDNA microarray. Mol Biol Rep 38:2471–2478

    Article  CAS  PubMed  Google Scholar 

  • Curran KA, Crook NC, Karim AS, Gupta A, Wagman AM, Alper HS (2014) Design of synthetic yeast promoters via tuning of nucleosome architecture. Nat Commun 5:4002

    Article  CAS  PubMed  Google Scholar 

  • Dai Z, Cui G, Zhou SF, Zhang X, Huang L (2011) Cloning and characterization of a novel 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Salvia miltiorrhiza involved in diterpenoid tanshinone accumulation. J Plant Physiol 168:148–157

    Article  CAS  PubMed  Google Scholar 

  • Dcluzeau A, Wamboldt Y, Elowsky CG, Mackenzie SA, Schuurink RC, Basset GJC (2012) Gene network reconstruction identifies the authentic trans-prenyl diphosphate synthase that makes the solanesyl moiety of ubiquinone-9 in Arabidopsis. Plant J 69:366–375

    Article  CAS  Google Scholar 

  • Deng Y, Li C, Li H, Lu S (2018) Identification and characterization of flavonoid biosynthetic enzyme genes in Salvia miltiorrhiza (Lamiaceae). Molecules 23:1467

    Article  PubMed Central  CAS  Google Scholar 

  • Dhindsa RS, Matowe W (1981) Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J Exp Bot 32:79–91

    Article  CAS  Google Scholar 

  • Draper H (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  CAS  PubMed  Google Scholar 

  • Du Q, Li C, Li D, Lu S (2015) Genome-wide analysis, molecular cloning and expression profiling reveal tissue-specifically expressed, feedback-regulated, stress-responsive and alternatively spliced novel genes involved in gibberellin metabolism in Salvia miltiorrhiza. BMC Genom 16:1087

    Article  CAS  Google Scholar 

  • Dutta A, Chan SH, Pauli NT, Raina R (2015) HYPERSENSITIVE RESPONSE-LIKE LESIONS 1 Codes for AtPPT1 and regulates accumulation of ROS and defense against bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana. Antioxid Redox Sign 22:785–796

    Article  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  CAS  PubMed  Google Scholar 

  • Ernster L, Dallner G (1995) Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophy Acta 1271:195–204

    Article  Google Scholar 

  • Fan WJ, Zhang M, Zhang HX, Zhang P (2012) Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS ONE 7:e37344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folkers K, Langsjoen P, Nara Y, Muratsu K, Komorowski J, Richardson PC, Smith TH (1988) Biochemical deficiencies of coenzyme Q10 in HIV-infection and exploratory treatment. Biochem Biophys Res Commun 153:888–896

    Article  CAS  PubMed  Google Scholar 

  • Folkers K, Hanioka T, Xia LJ, McRee Jr JT, Langsjoen P (1991) Coenzyme Q10 increases T4/T8 ratios of lymphocytes in ordinary subjects and relevance to patients having the AIDS related complex. Biochem Biophys Res Commun 176:786–791

    Article  CAS  PubMed  Google Scholar 

  • Folkers K, Brown R, Judy WV, Morita M (1993) Survival of cancer patients on therapy with coenzyme Q10. Biochem Biophys Res Commun 192:241–245

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplast, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Francin-Allami M, Saumonneau A, Lavenant L, Bouder A, Sparkes I, Hawes C, Popineau Y (2011) Dynamic trafficking of wheat γ-gliadin and of its structural domains in tobacco cells, studied with fluorescent protein fusions. J Exp Bot 62:4507–4520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu XZ, Chen CW, Wang Y, Liu JH, Moriguchi T (2011) Ectopic expression of MdSPDS1 in sweet orange (Citrus sinensis Osbeck) reduces canker susceptibility: involvement of H2O2 production and transcriptional alteration. BMC Plant Bio 11:55

    Article  CAS  Google Scholar 

  • Grünler J, Ericsso J, Dallner G (1994) Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochim Biophys Acta 1212:259–277

    Article  PubMed  Google Scholar 

  • Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Re 16:9877

    Article  CAS  Google Scholar 

  • Hou X, Shao F, Ma Y, Lu S (2013) The phenylalanine ammonia-lyase gene family in Salvia miltiorrhiza: genome-wide characterization, molecular cloning and expression analysis. Mol Biol Rep 40:4301–4310

    Article  CAS  PubMed  Google Scholar 

  • Ishizaki K, Schauer N, Larson TR, Graham IA, Fernie AR, Leaver CJ (2006) The mitochondrial electron transfer flavoprotein complex is essential for survival of Arabidopsis in extended darkness. Plant J 47:751–760

    Article  CAS  PubMed  Google Scholar 

  • Jonassen T, Larsen PL, Clarke CF (2001) A dietary source of coenzyme Q is essential for growth of long-lived Caenorhabditis elegans clk-1 mutants. Proc Natl Acad Sci USA 98:421–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaldis A, Ahmad A, Reid A, McGarvey B, Brandle J, Ma S, Jevnikar A, Kohalmi SE, Menassa R (2013) High-level production of human interleukin-10 fusions in tobacco cell suspension cultures. Plant Biotechnol J 11:535–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroger A, Klingenberg M (1973) Further evidence for the pool function of ubiquinone as derived from the inhibition of the electron transport by antimycin. Eur J Biochem 39:313–323

    Article  CAS  PubMed  Google Scholar 

  • Levavasseur F, Miyadera H, Sirois J, Tremblay ML, Kita K, Shoubridge E, Hekimi S (2001) Ubiquinone is necessary for mouse embryonic development but is not essential for mitochondrial respiration. J Biol Chem 276:46160–46164

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Lu S (2016) Plastoquinone and ubiquinone in plants: biosynthesis, physiological function and metabolic engineering. Front Plant Sci 7:1898

    PubMed  PubMed Central  Google Scholar 

  • Liu L, Zhang Y, Tang S, Zhao Q, Zhang Z, Zhang H, Dong L, Guo H, Xie Q (2010) An efficient system to detect protein ubiquitination by agroinfiltration in Nicotiana benthamiana. Plant J 61:893–903

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Ma Y, Du Q, Hou X, Wang M, Lu S (2019) Functional analysis of polyprenyl diphosphate synthase genes involved in plastoquinone and ubiquinone biosynthesis in Salvia miltiorrhiza. Front Plant Sci 10:893

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–276

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Yuan L, Wu B, Li X, Chen S, Lu S (2012) Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza. J Exp Bot 63:2809–2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandujano-Chávez A, Schoenbeck M, Ralston L, Lozoya-Gloria E, Chappell J (2000) Differential induction of sesquiterpene metabolism in tobacco cell suspension cultures by methyl jasmonate and fungal elicitor. Arch Biochem Biophys 381:285–294

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226

    Article  CAS  PubMed  Google Scholar 

  • Møller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Biol 52:561–591

    Article  Google Scholar 

  • Moludi J, Keshavarz S, Hosseinzadeh-attar MJ, Frooshani AR, Sadeghpour A, Salarkia S, Gholizadeh F (2015) Coenzyme Q10 effect in prevention of atrial fibrillation after Coronary Artery Bypass Graft: double-blind randomized clinical trial. Tehran Univ Med J 73:79–85

    Google Scholar 

  • Ohara K, Kokado Y, Yamamoto H, Sato F, Yazaki K (2004) Engineering of ubiquinone biosynthesis using the yeast coq2 gene confers oxidative stress tolerance in transgenic tobacco. Plant J 40:734–743

    Article  CAS  PubMed  Google Scholar 

  • Ohara K, Yamamoto K, Hamamoto M, Sasaki K, Yazaki K (2006) Functional characterization of OsPPT1, which encodes p-hydroxybenzoate polyprenyltransferase involved in ubiquinone biosynthesis in Oryza sativa. Plant Cell Physiol 47:581–590

    Article  CAS  PubMed  Google Scholar 

  • Okada K, Ohara K, Yazaki K, Nozaki K, Uchida N, Kawamukai M, Nojiri H, Yamane H (2004) The AtPPT1 gene encoding 4-hydroxybenzoate polyprenyl diphosphate transferase in ubiquinone biosynthesis is required for embryo development in Arabidopsis thaliana. Plant Mol Biol 57:567–577

    Article  Google Scholar 

  • Premkumar VG, Yuvaraj S, Sathish S, Shanthi P, Sachdanandam P (2008) Anti-angiogenic potential of coenzyme Q10, riboflavin and niacin in breast cancer patients undergoing tamoxifen therapy. Vascul Pharmacol 48:191–201

    Article  CAS  PubMed  Google Scholar 

  • Ranadive P, Mehta A, Chavan Y, Marx A, George S (2014) Morphological and molecular differentiation of Sporidiobolus johnsonii ATCC 20490 and its coenzyme Q10 overproducing mutant strain UF16. Indian J Microbiol 54:343–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmelzer C, Lindner I, Vock C, Fujii K, Döring F (2007) Functional connections and pathways of coenzyme Q10-inducible genes: an in silico study. IUBMB Life 59:628–633

    Article  PubMed  CAS  Google Scholar 

  • Song J, Luo H, Li C, Sun C, Xu J, Chen SL (2013) Salvia miltiorrhiza as medicinal model plant. Acta Pharmacol Sin 48:1099–1106

    Google Scholar 

  • Swiezewska E (2004) Ubiquinone and plastoquinone metabolism in plants. Methods Enzymol 378:124–131

    Article  CAS  PubMed  Google Scholar 

  • Swiezewska E, Dallner G, Andersson B, Ernster L (1993) Biosynthesis of ubiquinone and plastoquinone in the endoplasmic reticulum–Golgi membranes of spinach leaves. J Biol Chem 268:1494–1499

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thoma I, Loeffler C, Sinha AK, Gupta M, Krischke M, Steffan B, Roitsch T, Mueller MJ (2003) Cyclopentenone isoprostanes induced by reactive oxygen species trigger defense gene activation and phytoalexin accumulation in plants. Plant J 34:363–375

    Article  CAS  PubMed  Google Scholar 

  • Tran MT, Mitchell TM, Kennedy DT, Giles IT (2001) Role of coenzyme Q10 in chronic heart failure, angina, and hypertension. Pharmacotherapy 21:797–806

    Article  CAS  PubMed  Google Scholar 

  • Vasil’ev LA, Dzyubinskaya EV, Kiselevsky DB, Shestak AA, Samuilov VD (2011) Programmed cell death in plants: protective effect of mitochondrial-targeted quinones. Biochemistry 76:1120–1130

    PubMed  Google Scholar 

  • Wang Y, Hekimi S (2016) Understanding ubiquinone. Trends Cell Biol 5:367–378

    Article  CAS  Google Scholar 

  • Wang M, Deng Y, Shao F, Liu M, Pang Y, Li C, Lu S (2017) ARGONAUTE gens in Salvia miltiorrhiza: identification, characterization, and genetic transformation. Methods Mol Biol 1640:173

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Song J, Luo H, Zhang Y, Li Q, Zhu Y, Xu J, Li Y, Song C, Wang B, Sun W, Shen G, Zhang X, Qian J, Ji A, Xu Z, Luo X, He L, Li C, Sun C, Yan H, Cui G, Li X, Li X, Wei J, Liu J, Wang Y, Hayward A, Nelson D, Ning Z, Peter RJ, Qi X, Chen S (2016) Analysis of the genome sequence of the medicinal plant Salvia miltiorrhiza. Mol Plant 9:949–952

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Han H, Liu M, Zuo Z, Zhou K, Lü J, Zhu Y, Bai X, Wang Y (2013) Overexpression of the Arabidopsis photorespiratory pathway gene, serine: glyoxylate aminotransferase (AtAGT1), lead to salt stress tolerance in transgenic duckweed (Lemna minor). Plant Cell Tissue Organ Cult 113:407–416

    Article  CAS  Google Scholar 

  • Zhang L, Yan X, Wang J, Li S, Liao P, Ka G (2011) Molecular cloning and expression analysis of a new putative gene encoding 3-hydroxy-3-methylglutaryl-CoA synthase from Salvia miltiorrhiza. Acta Physiol Plant 33:953–961

    Article  CAS  Google Scholar 

  • Zhang G, Tian Y, Zhang J, Shu L, Yang S, Wang W, Sheng J, Dong Y, Chen W (2015) Hybrid de novo genome assembly of the Chinese herbal plant danshen (Salvia miltiorrhiza Bunge). Gigascience 4:62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the CAMS Innovation Fund for Medical Sciences (CIFMS) (2016-I2M-3-016), the National Natural Science Foundation of China (81773836) and the Fund for Postgraduate Innovation in Peking Union Medical College (2015-1007-14). We appreciate Prof. Xian’en Li for kindly providing S. miltiorrhiza plants and Prof. Wei Xiao for kindly providing yeast coq2 mutant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanfa Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Leena Tripathi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Chen, X., Wang, M. et al. SmPPT, a 4-hydroxybenzoate polyprenyl diphosphate transferase gene involved in ubiquinone biosynthesis, confers salt tolerance in Salvia miltiorrhiza. Plant Cell Rep 38, 1527–1540 (2019). https://doi.org/10.1007/s00299-019-02463-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-019-02463-5

Keywords

Navigation