Skip to main content

Advertisement

Log in

Production of recombinant proteins through sequestration in chloroplasts: a strategy based on nuclear transformation and post-translational protein import

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Recently, plants have emerged as a lucrative alternative system for the production of recombinant proteins, as recombinant proteins produced in plants are safer and cheaper than those produced in bacteria and animal cell-based production systems. To obtain high yields in plants, recombinant proteins are produced in chloroplasts using different strategies. The first strategy is based on chloroplast transformation, followed by gene expression and translation in chloroplasts. This has proven to be a powerful approach for the production of proteins at high levels. The second approach is based on nuclear transformation, followed by post-translational import of proteins from the cytosol into chloroplasts. In the nuclear transformation approach, foreign genes are stably integrated into the nuclear genome or transiently expressed in the nucleus by non-integrating T-DNA. Although this approach also has great potential for protein production at high levels, it has not been thoroughly investigated. In this review, we focus on nuclear transformation-based protein expression and its subsequent sequestration in chloroplasts, and summarize the different strategies used for high-level production of recombinant proteins. We also discuss future directions for further improvements in protein production in chloroplasts through nuclear transformation-based gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Adem M, Beyene D, Feyissa T (2017) Recent achievements obtained by chloroplast transformation. Plant Methods 13:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandaranayake AD, Almo SC (2014) Recent advances in mammalian protein production. FEBS Lett 588:253–260

    Article  CAS  PubMed  Google Scholar 

  • Burén S, Ortega-Villasante C, Blanco-Rivero A, Martínez-Bernardini A, Shutova T, Shevela D, Messinger J, Bako L, Villarejo A, Samuelsson G (2011) Importance of post-translational modifications for functionality of a chloroplast-localized carbonic anhydrase (CAH1) in Arabidopsis thaliana. PLoS One 6:e21021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cañizares MC, Liu L, Perrin Y, Tsakiris E, Lomonossoff GP (2006) A bipartite system for the constitutive and inducible expression of high levels of foreign proteins in plants. Plant Biotechnol J 4:183–193

    Article  CAS  PubMed  Google Scholar 

  • Ceriotti A, Duranti M, Bollini R (1998) Effects of N-glycosylation on the folding and structure of plant proteins. J Exp Bot 49:1091–1103

    Article  CAS  Google Scholar 

  • Chebolu S, Daniell H (2009) Chloroplast-derived vaccine antigens and biopharmaceuticals: expression, folding, assembly and functionality. Curr Top Microbiol Immunol 332:33–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R (2012) Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol Adv 30:1102–1107

    Article  CAS  PubMed  Google Scholar 

  • Chen KY, Li H (2007) Precursor binding to an 880-kDa Toc complex as an early step during active import of protein into chloroplasts. Plant J 49:149–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M-H, Huang L-F, H-m Li, Chen Y-R, Yu S-M (2004) Signal peptide-dependent targeting of a rice α-amylase and cargo proteins to plastids and extracellular compartments of plant cells. Plant Physiol 135:1367–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Lai H, Hurtado J, Stahnke J, Leuzinger K, Dent M (2013) Agroinfiltration as an effective and scalable strategy of gene delivery for production of pharmaceutical proteins. Adv Tech Biol Med 1:103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creissen G, Reynolds H, Xue Y, Mullineaux P (1995) Simultaneous targeting of pea glutathione reductase and of a bacterial fusion protein to chloroplasts and mitochondria in transgenic tobacco. Plant J 8:167–175

    Article  CAS  PubMed  Google Scholar 

  • Csorba T, Kontra L, Burgyán J (2015) Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479:85–103

    Article  CAS  PubMed  Google Scholar 

  • Cui C, Song F, Tan Y, Zhou X, Zhao W, Ma F, Liu Y, Hussain J, Wang Y, Yang G, He G (2011) Stable chloroplast transformation of immature scutella and inflorescences in wheat (Triticum aestivum L.). Acta Biochim Biophys Sin 43:284–291

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Singh ND, Mason H, Streatfield SJ (2009) Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci 14:669–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniell H, Lin CS, Yu M, Chang WJ (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17:134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egelkrout E, Rajan V, Howard JA (2012) Overproduction of recombinant proteins in plants. Plant Sci 184:83–101

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Nielsen H, Von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faye L, Daniell H (2006) Novel pathways for glycoprotein import into chloroplasts. Plant Biotechnol J 4:275–279

    Article  CAS  PubMed  Google Scholar 

  • Fujiuchi N, Matoba N, Matsuda R (2016) Environment control to improve recombinant protein yields in plants based on Agrobacterium-mediated transient gene expression. Front Bioeng Biotechnol 4:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gils M, Kandzia R, Marillonnet S, Klimyuk V, Gleba Y (2005) High-yield production of authentic human growth hormone using a plant virus-based expression system. Plant Biotechnol J 3:613–620

    Article  CAS  PubMed  Google Scholar 

  • Gomord V, Fitchette AC, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plasson C, Michaud D, Faye L (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotech J 8:564–587

    Article  CAS  Google Scholar 

  • Guo M, Ye J, Gao D, Xu N, Yang J (2018) Agrobacterium-mediated horizontal gene transfer: mechanism, biotechnological application, potential risk and forestalling strategy. Biotechnol Adv 37(1):259–270

    Article  CAS  PubMed  Google Scholar 

  • Halweg C, Thompson WF, Spiker S (2005) The Rb7 matrix attachment region increases the likelihood and magnitude of transgene expression in tobacco cells: a flow cytometric study. Plant Cell 17:418–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoppmann V, Di Fiore S, Zimmermann S, Emans N (2002) The potato granule bound starch synthase chloroplast transit peptide directs recombinant proteins to plastids. J Plant Physiol 159:1061

    Article  CAS  Google Scholar 

  • Hosfield T, Lu Q (1999) Influence of the amino acid residue downstream of (Asp) 4Lys on enterokinase cleavage of a fusion protein. Anal Biochem 269:10–16

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Mason HS (2004) Conformational analysis of hepatitis B surface antigen fusions in an Agrobacterium-mediated transient expression system. Plant Biotech J 2:241–249

    Article  CAS  Google Scholar 

  • Huang Z, Chen Q, Hjelm B, Arntzen C, Mason H (2009) A DNA replicon system for rapid high-level production of virus-like particles in plants. Biotechnol Bioeng 103:706–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang H-H, Yu M, Lai E-M (2017a) Agrobacterium-mediated plant transformation: biology and applications. Arabidopsis Book 15:e0186

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang I, Kang HJ, Sohn EJ, Lee YJ, Berggren P-O, Yoo YJ, Kim JY (2017b) Method of highly expressing target protein from plants using RbcS fusion protein and method of preparing composition for oral adminstration of medical protein using target protein expression plant body. In: US patent application publication No. US2017/0335361 A1

  • Hyunjong B, Lee D-S, Hwang I (2005) Dual targeting of xylanase to chloroplasts and peroxisomes as a means to increase protein accumulation in plant cells. J Exp Bot 57:161–169

    Article  CAS  PubMed  Google Scholar 

  • Islam MR, Kwak JW, Js Lee, Hong SW, Khan MRI, Lee Y, Lee Y, Lee SW, Hwang I (2018) Cost-effective production of tag-less recombinant protein in Nicotiana benthamiana. Plant Biotechnol J 17(6):1094–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang I-C, Nahm BH, Kim J-K (1999) Subcellular targeting of green fluorescent protein to plastids in transgenic rice plants provides a high-level expression system. Mol Breed 5:453–461

    Article  CAS  Google Scholar 

  • Jarvis P (2008) Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytol 179:257–285

    Article  CAS  PubMed  Google Scholar 

  • Jin S, Daniell H (2015) The engineered chloroplast genome just got smarter. Trends Plant Sci 20:622–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  • Kavanagh TA, Jefferson RA, Bevan MW (1988) Targeting a foreign protein to chloroplasts using fusions to the transit peptide of a chlorophyll a/b protein. Mol Gen Genet 215:38–45

    Article  CAS  PubMed  Google Scholar 

  • Kim EH, Suh SC, Park BS, Shin KS, Kweon SJ, Han EJ, Park SH, Kim YS, Kim JK (2009) Chloroplast-targeted expression of synthetic cry1Ac in transgenic rice as an alternative strategy for increased pest protection. Planta 230:397–405

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Lee D-S, Choi IS, Ahn S-J, Kim Y-H, Bae H-J (2010) Arabidopsis thaliana Rubisco small subunit transit peptide increases the accumulation of thermotoga maritima endoglucanase Cel5A in chloroplasts of transgenic tobacco plants. Transgenic Res 19:489–497

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Lee G, Jeon E, Ej Sohn, Lee Y, Kang H, Dw Lee, Kim DH, Hwang I (2013) The immediate upstream region of the 5′-UTR from the AUG start codon has a pronounced effect on the translational efficiency in Arabidopsis thaliana. Nucleic Acids Res 42:485–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köhler RH, Cao J, Zipfel WR, Webb WW, Hanson MR (1997) Exchange of protein molecules through connections between higher plant plastids. Science 276:2039–2042

    Article  PubMed  Google Scholar 

  • Komarova TV, Baschieri S, Donini M, Marusic C, Benvenuto E, Dorokhov YL (2010) Transient expression systems for plant-derived biopharmaceuticals. Expert Rev Vaccines 9:859–876

    Article  CAS  PubMed  Google Scholar 

  • Lee DW, Hwang I (2018) Evolution and design principles of the diverse chloroplast transit peptides. Mol Cells 41:161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DW, Lee S, G-j Lee, Lee KH, Kim S, Cheong G-W, Hwang I (2006) Functional characterization of sequence motifs in the transit peptide of Arabidopsis small subunit of rubisco. Plant Physiol 140:466–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DW, Kim JK, Lee S, Choi S, Kim S, Hwang I (2008) Arabidopsis nuclear-encoded plastid transit peptides contain multiple sequence subgroups with distinctive chloroplast-targeting sequence motifs. Plant Cell 20:1603–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DW, Jung C, Hwang I (2013) Cytosolic events involved in chloroplast protein targeting. Biochim Biophys Acta 1833:245–252

    Article  CAS  PubMed  Google Scholar 

  • Lee DW, Yoo Y-J, Razzak MA, Hwang I (2018) Prolines in transit peptides are crucial for efficient preprotein translocation into chloroplasts. Plant Physiol 176:663–677

    Article  CAS  PubMed  Google Scholar 

  • Lehtimäki N, Koskela MM, Mulo P (2015) Posttranslational modifications of chloroplast proteins: an emerging field. Plant Physiol 168:768–775

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Chiu CC (2010) Protein transport into chloroplasts. Annu Rev Plant Biol 61:157–180

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhang D, Xiong X, Yan B, Xie W, Sheen J, Li J-F (2017) A potent Cas9-derived gene activator for plant and mammalian cells. Nat Plants 3:930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lico C, Chen Q, Santi L (2008) Viral vectors for production of recombinant proteins in plants. J Cell Physiol 216:366–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowder LG, Zhou J, Zhang Y, Malzahn A, Zhong Z, Hsieh T-F, Voytas DF, Zhang Y, Qi Y (2018) Robust transcriptional activation in plants using multiplexed CRISPR-Act2. 0 and mTALE-act systems. Mol Plant 11:245–256

    Article  CAS  PubMed  Google Scholar 

  • Maclean J, Koekemoer M, Olivier A, Stewart D, Hitzeroth I, Rademacher T, Fischer R, Williamson A-L, Rybicki E (2007) Optimization of human papillomavirus type 16 (HPV-16) L1 expression in plants: comparison of the suitability of different HPV-16 L1 gene variants and different cell-compartment localization. J Gen Virol 88:1460–1469

    Article  CAS  PubMed  Google Scholar 

  • Marillonnet S, Giritch A, Gils M, Kandzia R, Klimyuk V, Gleba Y (2004) In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc Natl Acad Sci USA 101:6852–6857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y (2005) Systemic Agrobacterium tumefaciens–mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol 23:718

    Article  CAS  PubMed  Google Scholar 

  • Meyers A, Chakauya E, Shephard E, Tanzer FL, Maclean J, Lynch A, Williamson A-L, Rybicki EP (2008) Expression of HIV-1 antigens in plants as potential subunit vaccines. BMC Biotechnol 8:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obembe OO, Popoola JO, Leelavathi S, Reddy SV (2011) Advances in plant molecular farming. Biotechnol Adv 29:210–222

    Article  PubMed  Google Scholar 

  • Olejniczak SA, Łojewska E, Kowalczyk T, Sakowicz T (2016) Chloroplasts: state of research and practical applications of plastome sequencing. Planta 244:517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panstruga R, Hippe-Sanwald S, Lee Y-K, Lataster M, Lipka V, Fischer R, Liao YC, Häusler RE, Kreuzaler F, Hirsch H-J (1997) Expression and chloroplast-targeting of active phosphoenolpyruvate synthetase from Escherichia coli in Solanum tuberosum. Plant Sci 127:191–205

    Article  CAS  Google Scholar 

  • Pineo CB, Hitzeroth II, Rybicki EP (2013) Immunogenic assessment of plant-produced human papillomavirus type 16 L1/L2 chimaeras. Plant Biotech J 11:964–975

    Article  CAS  Google Scholar 

  • Richter S, Lamppa GK (1998) A chloroplast processing enzyme functions as the general stromal processing peptidase. Proc Natl Acad Sci USA 95:7463–7468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santi L, Batchelor L, Huang Z, Hjelm B, Kilbourne J, Arntzen CJ, Chen Q, Mason HS (2008) An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. Vaccine 26:1846–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scotti N, Rigano MM, Cardi T (2012) Production of foreign proteins using plastid transformation. Biotechnol Adv 30:387–397

    Article  CAS  PubMed  Google Scholar 

  • Sheludko YV (2008) Agrobacterium-mediated transient expression as an approach to production of recombinant proteins in plants. Recent Pat Biotechnol 2:198–208

    Article  CAS  PubMed  Google Scholar 

  • Sheludko Y, Sindarovska Y, Gerasymenko I, Bannikova M, Kuchuk N (2007) Comparison of several Nicotiana species as hosts for high-scale Agrobacterium-mediated transient expression. Biotechnol Bioeng 96:608–614

    Article  CAS  PubMed  Google Scholar 

  • Shen BR, Zhu CH, Yao Z, Cui LL, Zhang JJ, Yang CW, He ZH, Peng XX (2017) An optimized transit peptide for effective targeting of diverse foreign proteins into chloroplasts in rice. Sci Rep 7:46231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skala W, Goettig P, Brandstetter H (2013) Do-it-yourself histidine-tagged bovine enterokinase: a handy member of the protein engineer’s toolbox. J Biotech 168:421–425

    Article  CAS  Google Scholar 

  • Smith EF, Townsend CO (1907) A plant-tumor of bacterial origin. Science 25:671–673

    Article  CAS  PubMed  Google Scholar 

  • Sohn EJ, Lee Y, Park N, Park M, Kim NH, Park S, Min K, Gu S, Park Y, Song J (2018) Development of plant-produced E2 protein for use as a green vaccine against classical swine fever virus. J Plant Biol 61:241–252

    Article  CAS  Google Scholar 

  • Solá RJ, Griebenow K (2010) Glycosylation of therapeutic proteins. BioDrugs 24:9–21

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang WL, Zhao H (2009) Industrial biotechnology: tools and applications. Biotechnol J 4:1725–1739

    Article  CAS  PubMed  Google Scholar 

  • Tschofen M, Knopp D, Hood E, Stöger E (2016) Plant molecular farming: much more than medicines. Annu Rev Anal Chem 9:271–294

    Article  Google Scholar 

  • Vaquero C, Sack M, Chandler J, Drossard J, Schuster F, Monecke M, Schillberg S, Fischer R (1999) Transient expression of a tumor-specific single-chain fragment and a chimeric antibody in tobacco leaves. Proc Natl Acad Sci USA 96:11128–11133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villarejo A, Burén S, Larsson S, Déjardin A, Monné M, Rudhe C, Karlsson J, Jansson S, Lerouge P, Rolland N (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol 7:1224

    Article  CAS  PubMed  Google Scholar 

  • Vitlin Gruber A, Feiz L (2018) Rubisco assembly in the chloroplast. Front Mol Biosci 5:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Ge X, Dolan MC (2011) Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures. Biotechnol Adv 29:278–299

    Article  CAS  PubMed  Google Scholar 

  • Yanez RJ, Lamprecht R, Granadillo M, Weber B, Torrens I, Rybicki EP, Hitzeroth II (2017) Expression optimization of a cell membrane-penetrating human papillomavirus type 16 therapeutic vaccine candidate in Nicotiana benthamiana. PLoS One 12:e0183177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanez RJ, Lamprecht R, Granadillo M, Torrens I, Arcalís E, Stöger E, Rybicki EP, Hitzeroth II (2018) LALF32-51-E7, a HPV-16 therapeutic vaccine candidate, forms protein body-like structures when expressed in Nicotiana benthamiana leaves. Plant Biotechnol J 16:628–637

    Article  CAS  PubMed  Google Scholar 

  • Zahin M, Joh J, Khanal S, Husk A, Mason H, Warzecha H, S-j Ghim, Miller DM, Matoba N, Jenson AB (2016) Scalable production of HPV16 L1 protein and VLPs from tobacco leaves. PLoS One 11:e0160995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XP, Glaser E (2002) Interaction of plant mitochondrial and chloroplast signal peptides with the Hsp70 molecular chaperone. Trends Pharmacol Sci 7:14–21

    Article  CAS  Google Scholar 

  • Zhong H, Teymouri F, Chapman B, Maqbool SB, Sabzikar R, El-Maghraby Y, Dale B, Sticklen MB (2003) The pea (Pisum sativum L.) rbcS transit peptide directs the Alcaligenes eutrophus polyhydroxybutyrate enzymes into the maize (Zea mays L.) chloroplasts. Plant Sci 165:455–462

    Article  CAS  Google Scholar 

  • Zoschke R, Bock R (2018) Chloroplast translation: structural and functional organization, operational control, and regulation. Plant Cell 30:745–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q, van Wijk KJ (2008) Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS One 3:e1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Woojangchoon Project (PJ0109532018) of Rural Development Agency, Korea. Thangarasu Muthamil Selvan was supported by Korea Research Fellowship Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (Grant Number 2016H1D3A1938045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inhwan Hwang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Neal Stewart.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthamilselvan, T., Kim, J.S., Cheong, G. et al. Production of recombinant proteins through sequestration in chloroplasts: a strategy based on nuclear transformation and post-translational protein import. Plant Cell Rep 38, 825–833 (2019). https://doi.org/10.1007/s00299-019-02431-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-019-02431-z

Keywords