Amano E (1968) Comparison of ethyl methanesulfonate- and radiation-induced waxy mutants in maize. Mutat Res Mol Mech Mutagen 5:41–46. https://doi.org/10.1016/0027-5107(68)90079-1
Article
CAS
Google Scholar
Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764. https://doi.org/10.1126/science.1079512
Article
CAS
PubMed
Google Scholar
Bortesi L, Zhu C, Zischewski J et al (2016) Patterns of CRISPR/Cas9 activity in plants, animals and microbes. Plant Biotechnol J 14:2203–2216. https://doi.org/10.1111/pbi.12634
Article
CAS
PubMed
PubMed Central
Google Scholar
Briggs RW, Amano E, Smith HH (1965) Genetic recombination with ethyl-methanesulphonate-induced waxy mutants in-maize. Nature 207:890–891. https://doi.org/10.1038/207890a0
Article
Google Scholar
Candela H, Hake S (2008) The art and design of genetic screens: maize. Nat Rev Genet 9:192–203. https://doi.org/10.1038/nrg2291
Article
PubMed
Google Scholar
Char SN, Unger-Wallace E, Frame B et al (2015) Heritable site-specific mutagenesis using TALENs in maize. Plant Biotechnol J 13:1002–1010. https://doi.org/10.1111/pbi.12344
Article
CAS
PubMed
Google Scholar
Char SN, Neelakandan AK, Nahampun H et al (2017) An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J 15:257–268. https://doi.org/10.1111/pbi.12611
Article
CAS
PubMed
Google Scholar
Choulika A, Perrin A, Dujon B, Nicolas JF (1994) The yeast I-SceI meganuclease induces site-directed chromosomal recombination in mammalian cells. C R Acad Sci III 317:1013–1019
CAS
PubMed
Google Scholar
Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218
Article
CAS
PubMed
Google Scholar
Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761. https://doi.org/10.1534/genetics.110.120717
Article
CAS
PubMed
PubMed Central
Google Scholar
Cigan A, Gadlage MJ, Gao H et al (2017) Waxy corn, pp 1–61. https://patentscope.wipo.int/search/en/detail.jsf;jsessionid=FD5F3728AF195B3CFB0BB3F508AE9A20.wapp2nB;jsessionid=E08E16F010D7105717AC3CA922D46B1A.wapp2nB?docId=WO2017132239%26recNum=150%26office=%26queryString=%26prevFilter=%26fq%3DOF%3AWO%26fq%3DICF_M%3A%22C12N%22%26sortOption=%E5%85%AC%E5%B8%83%E6%97%A5%E9%99%8D%E5%BA%8F%26maxRec=40323
Clarke R, Heler R, MacDougall MS et al (2018) Enhanced bacterial immunity and mammalian genome editing via RNA-polymerase-mediated dislodging of Cas9 from double-strand DNA breaks. Mol Cell 71:42–55.e8. https://doi.org/10.1016/j.molcel.2018.06.005
Article
CAS
PubMed
PubMed Central
Google Scholar
Collins GN (1909) A new type of Indian corn from China. US Dept Agric Cur Plant Indust Bull, pp 1–30
Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. https://doi.org/10.1126/science.1231143
Article
CAS
PubMed
PubMed Central
Google Scholar
Doll NM, Depège-Fargeix N, Rogowsky PM, Widiez T (2017) Signaling in early maize kernel development. Mol Plant 10:375–388. https://doi.org/10.1016/j.molp.2017.01.008
Article
CAS
PubMed
Google Scholar
Feng C, Yuan J, Wang R et al (2016) Efficient targeted genome modification in maize using CRISPR/Cas9 system. J Genet Genomics Yi Chuan Xue Bao 43:37–43. https://doi.org/10.1016/j.jgg.2015.10.002
Article
PubMed
Google Scholar
Gantner J, Ordon J, Ilse T et al (2018) Peripheral infrastructure vectors and an extended set of plant parts for the modular cloning system. PLoS One 13:e0197185. https://doi.org/10.1371/journal.pone.0197185
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao H, Smith J, Yang M et al (2010) Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J 61:176–187. https://doi.org/10.1111/j.1365-313X.2009.04041.x
Article
CAS
PubMed
Google Scholar
Gerdes JT, Tracy WF (1993) Pedigree diversity within the Lancaster Surecrop heterotic group of maize. Crop Sci 33:334–337. https://doi.org/10.2135/cropsci1993.0011183X003300020025x
Article
Google Scholar
Gilles LM, Khaled A, Laffaire J-B et al (2017) Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J 36:707–717. https://doi.org/10.15252/embj.201796603
Article
CAS
PubMed
PubMed Central
Google Scholar
Haeussler M, Schönig K, Eckert H et al (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148. https://doi.org/10.1186/s13059-016-1012-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832. https://doi.org/10.1038/nbt.2647
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishida Y, Saito H, Ohta S et al (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750. https://doi.org/10.1038/nbt0696-745
Article
CAS
PubMed
Google Scholar
Ishida Y, Hiei Y, Komari T (2007) Agrobacterium-mediated transformation of maize. Nat Protoc 2:1614–1621. https://doi.org/10.1038/nprot.2007.241
Article
CAS
PubMed
Google Scholar
Jensen KT, Fløe L, Petersen TS et al (2017) Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency. FEBS Lett 591:1892–1901. https://doi.org/10.1002/1873-3468.12707
Article
CAS
PubMed
Google Scholar
Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829
Article
CAS
PubMed
PubMed Central
Google Scholar
Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36:765–771. https://doi.org/10.1038/nbt.4192
Article
CAS
PubMed
PubMed Central
Google Scholar
Labuhn M, Adams FF, Ng M et al (2018) Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications. Nucleic Acids Res 46:1375–1385. https://doi.org/10.1093/nar/gkx1268
Article
CAS
PubMed
Google Scholar
Lee K, Zhang Y, Kleinstiver BP et al (2018) Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnol J. https://doi.org/10.1111/pbi.12982
Article
PubMed
PubMed Central
Google Scholar
Lei Y, Lu L, Liu H-Y et al (2014) CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 7:1494–1496. https://doi.org/10.1093/mp/ssu044
Article
CAS
PubMed
Google Scholar
Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41:63–68. https://doi.org/10.1016/j.jgg.2013.12.001
Article
CAS
PubMed
Google Scholar
Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211. https://doi.org/10.1146/annurev.biochem.052308.093131
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin Y, Cradick TJ, Brown MT et al (2014) CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res 42:7473–7485. https://doi.org/10.1093/nar/gku402
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Homma A, Sayadi J et al (2016) Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system. Sci Rep 6:19675. https://doi.org/10.1038/srep19675
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma X, Zhu Q, Chen Y, Liu Y-G (2016) CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol Plant 9:961–974. https://doi.org/10.1016/j.molp.2016.04.009
Article
CAS
PubMed
Google Scholar
Mali P, Aach J, Stranges PB et al (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31:833–838. https://doi.org/10.1038/nbt.2675
Article
CAS
PubMed
PubMed Central
Google Scholar
Marçais G, Kingsford C (2011) A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics (Oxf, Engl) 27:764–770. https://doi.org/10.1093/bioinformatics/btr011
Article
CAS
Google Scholar
McVey M, Lee SE (2008) MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet TIG 24:529–538. https://doi.org/10.1016/j.tig.2008.08.007
Article
CAS
PubMed
Google Scholar
Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23(10):1233–1236. https://doi.org/10.1038/cr.2013.123
Article
CAS
PubMed
PubMed Central
Google Scholar
Nekrasov V, Staskawicz B, Weigel D et al (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693. https://doi.org/10.1038/nbt.2655
Article
CAS
PubMed
Google Scholar
Neuffer MG, Sheridan WF (1980) Defective kernel mutants of maize. I. Genetic and lethality studies. Genetics 95:929–944
CAS
PubMed
PubMed Central
Google Scholar
Opsahl-Ferstad H-G, Deunff EL, Dumas C, Rogowsky PM (1997) ZmEsr, a novel endosperm-specific gene expressed in a restricted region around the maize embryo. Plant J 12:235–246. https://doi.org/10.1046/j.1365-313X.1997.12010235.x
Article
CAS
PubMed
Google Scholar
Pattanayak V, Lin S, Guilinger JP et al (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31:839–843. https://doi.org/10.1038/nbt.2673
Article
CAS
PubMed
PubMed Central
Google Scholar
Peterson BA, Haak DC, Nishimura MT et al (2016) Genome-wide assessment of efficiency and specificity in CRISPR/Cas9 mediated multiple site targeting in Arabidopsis. PLoS One 11:e0162169. https://doi.org/10.1371/journal.pone.0162169
Article
CAS
PubMed
PubMed Central
Google Scholar
Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973. https://doi.org/10.1038/nbt1125
Article
CAS
PubMed
Google Scholar
Puchta H, Fauser F (2014) Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J 78:727–741. https://doi.org/10.1111/tpj.12338
Article
CAS
PubMed
Google Scholar
Qi W, Zhu T, Tian Z et al (2016) High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotechnol 16:58. https://doi.org/10.1186/s12896-016-0289-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren X, Yang Z, Xu J et al (2014) Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep 9:1151–1162. https://doi.org/10.1016/j.celrep.2014.09.044
Article
CAS
PubMed
PubMed Central
Google Scholar
Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115. https://doi.org/10.1126/science.1178534
Article
CAS
PubMed
Google Scholar
Settles AM, Holding DR, Tan BC et al (2007) Sequence-indexed mutations in maize using the UniformMu transposon-tagging population. BMC Genomics 8:116. https://doi.org/10.1186/1471-2164-8-116
Article
CAS
PubMed
PubMed Central
Google Scholar
Shan Q, Wang Y, Li J et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688. https://doi.org/10.1038/nbt.2650
Article
CAS
PubMed
Google Scholar
Shi J, Gao H, Wang H et al (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216. https://doi.org/10.1111/pbi.12603
Article
CAS
PubMed
Google Scholar
Shukla VK, Doyon Y, Miller JC et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441. https://doi.org/10.1038/nature07992
Article
CAS
PubMed
Google Scholar
Shure M, Wessler S, Fedoroff N (1983) Molecular identification and isolation of the Waxy locus in maize. Cell 35:225–233
Article
CAS
PubMed
Google Scholar
Siebert R, Puchta H (2002) Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome. Plant Cell 14:1121–1131
Article
CAS
PubMed
PubMed Central
Google Scholar
Sinha S, Li F, Villarreal D et al (2017) Microhomology-mediated end joining induces hypermutagenesis at breakpoint junctions. PLoS Genet 13:e1006714. https://doi.org/10.1371/journal.pgen.1006714
Article
CAS
PubMed
PubMed Central
Google Scholar
Steinert J, Schiml S, Puchta H (2016) Homology-based double-strand break-induced genome engineering in plants. Plant Cell Rep 35:1429–1438. https://doi.org/10.1007/s00299-016-1981-3
Article
CAS
PubMed
Google Scholar
Svitashev S, Young JK, Schwartz C et al (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–945. https://doi.org/10.1104/pp.15.00793
Article
CAS
PubMed
PubMed Central
Google Scholar
Svitashev S, Schwartz C, Lenderts B et al (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7:13274. https://doi.org/10.1038/ncomms13274
Article
CAS
PubMed
PubMed Central
Google Scholar
Vollbrecht E, Duvick J, Schares JP et al (2010) Genome-wide distribution of transposed dissociation elements in maize. Plant Cell 22:1667–1685. https://doi.org/10.1105/tpc.109.073452
Article
CAS
PubMed
PubMed Central
Google Scholar
Waltz E (2016) CRISPR-edited crops free to enter market, skip regulation. Nat Biotechnol 34:582. https://doi.org/10.1038/nbt0616-582
Article
CAS
PubMed
Google Scholar
Wang H, Xu X (2017) Microhomology-mediated end joining: new players join the team. Cell Biosci 7:6. https://doi.org/10.1186/s13578-017-0136-8
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu X, Scott DA, Kriz AJ et al (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32:670–676. https://doi.org/10.1038/nbt.2889
Article
CAS
PubMed
PubMed Central
Google Scholar
Xing H-L, Dong L, Wang Z-P et al (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:. https://doi.org/10.1186/s12870-014-0327-y
Zhu J, Song N, Sun S et al (2016) Efficiency and inheritance of targeted mutagenesis in maize using CRISPR-Cas9. J Genet Genomics Yi Chuan Xue Bao 43:25–36. https://doi.org/10.1016/j.jgg.2015.10.006
Article
PubMed
Google Scholar
Zuo Z, Liu J (2016) Cas9-catalyzed DNA cleavage generates staggered ends: evidence from molecular dynamics simulations. Sci Rep 5:37584. https://doi.org/10.1038/srep37584
Article
CAS
PubMed
PubMed Central
Google Scholar