Abstract
Key message
The analysis of 93 mutant alleles in 18 genes demonstrated that CRISPR–Cas9 is a robust tool for targeted mutagenesis in maize, permitting efficient generation of single and multiple knockouts.
Abstract
CRISPR–Cas9 technology is a simple and efficient tool for targeted mutagenesis of the genome. It has been implemented in many plant species, including crops such as maize. Here we report single- and multiple-gene mutagenesis via stably transformed maize plants. Two different CRISPR–Cas9 vectors were used allowing the expression of multiple guide RNAs and different strategies to knockout either independent or paralogous genes. A total of 12 plasmids, representing 28 different single guide RNAs (sgRNAs), were generated to target 20 genes. For 18 of these genes, at least one mutant allele was obtained, while two genes were recalcitrant to sequence editing. 19% (16/83) of mutant plants showed biallelic mutations. Small insertions or deletions of less than ten nucleotides were most frequently observed, regardless of whether the gene was targeted by one or more sgRNAs. Deletions of defined regions located between the target sites of two guide RNAs were also reported although the exact deletion size was variable. Double and triple mutants were created in a single step, which is especially valuable for functional analysis of genes with strong genetic linkage. Off-target effects were theoretically limited due to rigorous sgRNA design and random experimental checks at three potential off-target sites did not reveal any editing. Sanger chromatograms allowed to unambiguously class the primary transformants; the majority (85%) were fully edited plants transmitting systematically all detected mutations to the next generation, generally following Mendelian segregation.
This is a preview of subscription content, access via your institution.



Data Availability
The two plasmids generated during the current study are available at GeneBank under the accession number MH662439 for L1609 and MH662440 for L1611.
Abbreviations
- bp:
-
Base pairs
- Cas9:
-
CRISPR-associated protein 9
- CRISPR:
-
Clustered regularly interspaced short palindromic repeats
- DSB:
-
Double-strand break
- EMS:
-
Ethyl methanesulfonate
- ESR:
-
Embryo surrounding region
- HR:
-
Homologous recombination
- MMEJ:
-
Microhomology-mediated end joining
- NHEJ:
-
Non-homologous end joining
- PAM:
-
Protospacer adjacent motif
- SDN1:
-
Site-directed nuclease 1
- sgRNA:
-
Single guide RNA
- shRNA:
-
Short hairpin RNA, also referring to scaffold RNA
- T-DNA:
-
Transfer DNA
References
Amano E (1968) Comparison of ethyl methanesulfonate- and radiation-induced waxy mutants in maize. Mutat Res Mol Mech Mutagen 5:41–46. https://doi.org/10.1016/0027-5107(68)90079-1
Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764. https://doi.org/10.1126/science.1079512
Bortesi L, Zhu C, Zischewski J et al (2016) Patterns of CRISPR/Cas9 activity in plants, animals and microbes. Plant Biotechnol J 14:2203–2216. https://doi.org/10.1111/pbi.12634
Briggs RW, Amano E, Smith HH (1965) Genetic recombination with ethyl-methanesulphonate-induced waxy mutants in-maize. Nature 207:890–891. https://doi.org/10.1038/207890a0
Candela H, Hake S (2008) The art and design of genetic screens: maize. Nat Rev Genet 9:192–203. https://doi.org/10.1038/nrg2291
Char SN, Unger-Wallace E, Frame B et al (2015) Heritable site-specific mutagenesis using TALENs in maize. Plant Biotechnol J 13:1002–1010. https://doi.org/10.1111/pbi.12344
Char SN, Neelakandan AK, Nahampun H et al (2017) An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J 15:257–268. https://doi.org/10.1111/pbi.12611
Choulika A, Perrin A, Dujon B, Nicolas JF (1994) The yeast I-SceI meganuclease induces site-directed chromosomal recombination in mammalian cells. C R Acad Sci III 317:1013–1019
Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218
Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761. https://doi.org/10.1534/genetics.110.120717
Cigan A, Gadlage MJ, Gao H et al (2017) Waxy corn, pp 1–61. https://patentscope.wipo.int/search/en/detail.jsf;jsessionid=FD5F3728AF195B3CFB0BB3F508AE9A20.wapp2nB;jsessionid=E08E16F010D7105717AC3CA922D46B1A.wapp2nB?docId=WO2017132239%26recNum=150%26office=%26queryString=%26prevFilter=%26fq%3DOF%3AWO%26fq%3DICF_M%3A%22C12N%22%26sortOption=%E5%85%AC%E5%B8%83%E6%97%A5%E9%99%8D%E5%BA%8F%26maxRec=40323
Clarke R, Heler R, MacDougall MS et al (2018) Enhanced bacterial immunity and mammalian genome editing via RNA-polymerase-mediated dislodging of Cas9 from double-strand DNA breaks. Mol Cell 71:42–55.e8. https://doi.org/10.1016/j.molcel.2018.06.005
Collins GN (1909) A new type of Indian corn from China. US Dept Agric Cur Plant Indust Bull, pp 1–30
Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. https://doi.org/10.1126/science.1231143
Doll NM, Depège-Fargeix N, Rogowsky PM, Widiez T (2017) Signaling in early maize kernel development. Mol Plant 10:375–388. https://doi.org/10.1016/j.molp.2017.01.008
Feng C, Yuan J, Wang R et al (2016) Efficient targeted genome modification in maize using CRISPR/Cas9 system. J Genet Genomics Yi Chuan Xue Bao 43:37–43. https://doi.org/10.1016/j.jgg.2015.10.002
Gantner J, Ordon J, Ilse T et al (2018) Peripheral infrastructure vectors and an extended set of plant parts for the modular cloning system. PLoS One 13:e0197185. https://doi.org/10.1371/journal.pone.0197185
Gao H, Smith J, Yang M et al (2010) Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J 61:176–187. https://doi.org/10.1111/j.1365-313X.2009.04041.x
Gerdes JT, Tracy WF (1993) Pedigree diversity within the Lancaster Surecrop heterotic group of maize. Crop Sci 33:334–337. https://doi.org/10.2135/cropsci1993.0011183X003300020025x
Gilles LM, Khaled A, Laffaire J-B et al (2017) Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J 36:707–717. https://doi.org/10.15252/embj.201796603
Haeussler M, Schönig K, Eckert H et al (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148. https://doi.org/10.1186/s13059-016-1012-2
Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832. https://doi.org/10.1038/nbt.2647
Ishida Y, Saito H, Ohta S et al (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750. https://doi.org/10.1038/nbt0696-745
Ishida Y, Hiei Y, Komari T (2007) Agrobacterium-mediated transformation of maize. Nat Protoc 2:1614–1621. https://doi.org/10.1038/nprot.2007.241
Jensen KT, Fløe L, Petersen TS et al (2017) Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency. FEBS Lett 591:1892–1901. https://doi.org/10.1002/1873-3468.12707
Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829
Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36:765–771. https://doi.org/10.1038/nbt.4192
Labuhn M, Adams FF, Ng M et al (2018) Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications. Nucleic Acids Res 46:1375–1385. https://doi.org/10.1093/nar/gkx1268
Lee K, Zhang Y, Kleinstiver BP et al (2018) Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnol J. https://doi.org/10.1111/pbi.12982
Lei Y, Lu L, Liu H-Y et al (2014) CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 7:1494–1496. https://doi.org/10.1093/mp/ssu044
Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41:63–68. https://doi.org/10.1016/j.jgg.2013.12.001
Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211. https://doi.org/10.1146/annurev.biochem.052308.093131
Lin Y, Cradick TJ, Brown MT et al (2014) CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res 42:7473–7485. https://doi.org/10.1093/nar/gku402
Liu X, Homma A, Sayadi J et al (2016) Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system. Sci Rep 6:19675. https://doi.org/10.1038/srep19675
Ma X, Zhu Q, Chen Y, Liu Y-G (2016) CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol Plant 9:961–974. https://doi.org/10.1016/j.molp.2016.04.009
Mali P, Aach J, Stranges PB et al (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31:833–838. https://doi.org/10.1038/nbt.2675
Marçais G, Kingsford C (2011) A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics (Oxf, Engl) 27:764–770. https://doi.org/10.1093/bioinformatics/btr011
McVey M, Lee SE (2008) MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet TIG 24:529–538. https://doi.org/10.1016/j.tig.2008.08.007
Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23(10):1233–1236. https://doi.org/10.1038/cr.2013.123
Nekrasov V, Staskawicz B, Weigel D et al (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693. https://doi.org/10.1038/nbt.2655
Neuffer MG, Sheridan WF (1980) Defective kernel mutants of maize. I. Genetic and lethality studies. Genetics 95:929–944
Opsahl-Ferstad H-G, Deunff EL, Dumas C, Rogowsky PM (1997) ZmEsr, a novel endosperm-specific gene expressed in a restricted region around the maize embryo. Plant J 12:235–246. https://doi.org/10.1046/j.1365-313X.1997.12010235.x
Pattanayak V, Lin S, Guilinger JP et al (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31:839–843. https://doi.org/10.1038/nbt.2673
Peterson BA, Haak DC, Nishimura MT et al (2016) Genome-wide assessment of efficiency and specificity in CRISPR/Cas9 mediated multiple site targeting in Arabidopsis. PLoS One 11:e0162169. https://doi.org/10.1371/journal.pone.0162169
Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973. https://doi.org/10.1038/nbt1125
Puchta H, Fauser F (2014) Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J 78:727–741. https://doi.org/10.1111/tpj.12338
Qi W, Zhu T, Tian Z et al (2016) High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotechnol 16:58. https://doi.org/10.1186/s12896-016-0289-2
Ren X, Yang Z, Xu J et al (2014) Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep 9:1151–1162. https://doi.org/10.1016/j.celrep.2014.09.044
Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115. https://doi.org/10.1126/science.1178534
Settles AM, Holding DR, Tan BC et al (2007) Sequence-indexed mutations in maize using the UniformMu transposon-tagging population. BMC Genomics 8:116. https://doi.org/10.1186/1471-2164-8-116
Shan Q, Wang Y, Li J et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688. https://doi.org/10.1038/nbt.2650
Shi J, Gao H, Wang H et al (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216. https://doi.org/10.1111/pbi.12603
Shukla VK, Doyon Y, Miller JC et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441. https://doi.org/10.1038/nature07992
Shure M, Wessler S, Fedoroff N (1983) Molecular identification and isolation of the Waxy locus in maize. Cell 35:225–233
Siebert R, Puchta H (2002) Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome. Plant Cell 14:1121–1131
Sinha S, Li F, Villarreal D et al (2017) Microhomology-mediated end joining induces hypermutagenesis at breakpoint junctions. PLoS Genet 13:e1006714. https://doi.org/10.1371/journal.pgen.1006714
Steinert J, Schiml S, Puchta H (2016) Homology-based double-strand break-induced genome engineering in plants. Plant Cell Rep 35:1429–1438. https://doi.org/10.1007/s00299-016-1981-3
Svitashev S, Young JK, Schwartz C et al (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–945. https://doi.org/10.1104/pp.15.00793
Svitashev S, Schwartz C, Lenderts B et al (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7:13274. https://doi.org/10.1038/ncomms13274
Vollbrecht E, Duvick J, Schares JP et al (2010) Genome-wide distribution of transposed dissociation elements in maize. Plant Cell 22:1667–1685. https://doi.org/10.1105/tpc.109.073452
Waltz E (2016) CRISPR-edited crops free to enter market, skip regulation. Nat Biotechnol 34:582. https://doi.org/10.1038/nbt0616-582
Wang H, Xu X (2017) Microhomology-mediated end joining: new players join the team. Cell Biosci 7:6. https://doi.org/10.1186/s13578-017-0136-8
Wu X, Scott DA, Kriz AJ et al (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32:670–676. https://doi.org/10.1038/nbt.2889
Xing H-L, Dong L, Wang Z-P et al (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:. https://doi.org/10.1186/s12870-014-0327-y
Zhu J, Song N, Sun S et al (2016) Efficiency and inheritance of targeted mutagenesis in maize using CRISPR-Cas9. J Genet Genomics Yi Chuan Xue Bao 43:25–36. https://doi.org/10.1016/j.jgg.2015.10.006
Zuo Z, Liu J (2016) Cas9-catalyzed DNA cleavage generates staggered ends: evidence from molecular dynamics simulations. Sci Rep 5:37584. https://doi.org/10.1038/srep37584
Acknowledgements
We thank Bing Yang (Iowa State University) for sharing the Iowa vectors prior to publication, Jean-Philippe Pichon (Biogemma SA) for providing unpublished genomic sequences of genotype A188, Justin Berger, Patrice Bolland and Alexis Lacroix for maize culture, Isabelle Desbouchages and Hervé Leyral for buffers and media preparation, as well as Sandrine Chaignon, Jérôme Laplaige and Edwige Delahaye for technical assistance. We acknowledge support by the Investissement d’Avenir program of the French National Agency of Research for the project GENIUS (ANR-11-BTBR-0001_GENIUS) to PMR and by the INRA Plant Science and Breeding Division for the project SeedCom to TW. NMD is funded by a PhD fellowship from the Ministère de l’Enseignement Supérieur et de la Recherche. LMG and YF are supported by CIFRE fellowships of the ANRT (Grants 2015/0777 and 2018/0480). VMGB is supported by the Doctoral School on the Agro-Food System (Agrisystem) of Università Cattolica del Sacro Cuore (Italy).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
LMG is employed by Limagrain Europe. YF is employed by MAS seed. PMR is part of the GIS-BV (“Groupement d’Intérêt Scientifique Biotechnologies Vertes”).
Additional information
Communicated by Fabien Nogué.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Doll, N.M., Gilles, L.M., Gérentes, MF. et al. Single and multiple gene knockouts by CRISPR–Cas9 in maize. Plant Cell Rep 38, 487–501 (2019). https://doi.org/10.1007/s00299-019-02378-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00299-019-02378-1
Keywords
- CRISPR
- Gene editing
- Maize
- SDN1
- Mutagenesis
- Zea mays