Plant Cell Reports

, Volume 38, Issue 2, pp 243–253 | Cite as

Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus

  • Li-Na Ding
  • Xiao-Juan Guo
  • Ming Li
  • Zheng-Li Fu
  • Su-Zhen Yan
  • Ke-Ming Zhu
  • Zheng Wang
  • Xiao-Li TanEmail author
Original Article


Key message

Seed germination rate and oil content can be regulated at theGDSL transcriptional level by eitherAtGDSL1 orBnGDSL1 inB. napus.


Gly-Asp-Ser-Leu (GDSL)-motif lipases represent an important subfamily of lipolytic enzymes, which play important roles in lipid metabolism, seed development, abiotic stress, and pathogen defense. In the present study, two closely related GDSL-motif lipases, Brassica napus GDSL1 and Arabidopsis thaliana GDSL1, were characterized as functioning in regulating germination rate and seed oil content in B. napus. AtGDSL1 and BnGDSL1 overexpression lines showed an increased seed germination rate and improved seedling establishment compared with wild type. Meanwhile, the constitutive overexpression of AtGDSL1 and BnGDSL1 promoted lipid catabolism and decreased the seed oil content. While RNAi-mediated suppression of BnGDSL1 (Bngdsl1) in B. napus improved the seed oil content and decreased seed germination rate. Moreover, the Bngdsl1 transgenic seeds showed changes in the fatty acid (FA) composition, featuring an increase in C18:1 and a decrease in C18:2 and C18:3. The transcriptional levels of six related core enzymes involved in FA mobilization were all elevated in the AtGDSL1 and BnGDSL1 overexpression lines, but strongly suppressed in the Bngdsl1 transgenic line. These results suggest that improving the seed germination and seed oil content in B. napus could be achieved by regulating the GDSL transcriptional level.


Brassica napus GDSL lipase Seed germination Oil contents Fatty acid 



This work was supported by the National Key R&D Program of China (2016YFD0101904 and 2016YFD0100305) and the National Natural Science Foundation of China (31471527 and 31271760).

Compliance with ethical standards

Conflict of interest

The authors have declared that no competing interests exist.

Supplementary material

299_2018_2365_MOESM1_ESM.doc (29.2 mb)
Supplementary material 1 (DOC 29857 KB)


  1. Ahmad A, Bhattacharya A, McDonald RA et al (2011) Heat shock protein 70 kDa chaperone/DnaJ cochaperone complex employs an unusual dynamic interface. Proc Natl Acad Sci USA 108:18966–18971CrossRefGoogle Scholar
  2. Akoh CC, Lee GC, Liaw YC, Huang TH, Shaw JF (2004) GDSL family of serine esterases/lipases. Prog Lipid Res 43:534–552CrossRefGoogle Scholar
  3. Al-Taweel K, Fernando WG, Brûlé-Babel AL (2014) Transcriptome profiling of wheat differentially expressed genes exposed to different chemotypes of Fusarium graminearum. Theor Appl Genet 127:1703–1718CrossRefGoogle Scholar
  4. BäUmlein H, Boerjan W, Nagy I, Bassfüner R, Van Montagu M, Inzé D, Wobus U (1991) A novel seed protein gene from Vicia faba is developmentally regulated in transgenic tobacco and Arabidopsis plants. Mol Genl Genet 225:459–467CrossRefGoogle Scholar
  5. Bradbeer JW (1988) Seed dormancy and germination. Springer, New YorkCrossRefGoogle Scholar
  6. Brick DJ, Brumlik MJ, Buckley JT, Cao JX, Davies PC, Misra S, Tranbarger TJ. Upton C (1995) A new family of lipolytic plant enzymes with members in rice, Arabidopsis and maize. FEBS Lett 377:475–480CrossRefGoogle Scholar
  7. Chen M, Du X, Zhu Y, Wang Z, Hua S, Li Z, Guo W, Zhang G, Peng J, Jiang L (2012) Seed fatty acid reducer acts downstream of gibberellin signalling pathway to lower seed fatty acid storage in Arabidopsis. Plant Cell Environ 35:2155–2169CrossRefGoogle Scholar
  8. Chepyshko H, Lai CP, Huang LM, Liu JH, Shaw JF (2012) Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis. BMC Genom 13:309CrossRefGoogle Scholar
  9. Chia TY, Pike MJ, Rawsthorne S (2005) Storage oil breakdown during embryo development of Brassica napus (L.). J Exp Bot 5:1285–1296CrossRefGoogle Scholar
  10. Clauss K, von Roepenack-Lahaye E, Böttcher C et al (2011) Overexpression of sinapine esterase BnSCE3 in oilseed rape seeds triggers global changes in seed metabolism. Plant Physiol 155:1127–1145CrossRefGoogle Scholar
  11. Cruz Castillo M, Martinez C, Buchala A, Metraux JP, Leon J (2004) Gene-specific involvement of beta-oxidation in wound-activated responses in Arabidopsis. Plant Physiol 135:85–94CrossRefGoogle Scholar
  12. Dave A, Hernández ML, He Z, Andriotis VM, Vaistij FE, Larson TR, Graham IA (2011) 12-Oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis. Plant cell 23:583–599CrossRefGoogle Scholar
  13. Ding L, Yang G, Cao J, Zhou Y, Yang R (2016)) Molecular cloning and functional characterization of a DNA damage-inducible (DDI) gene in Arabidopsis. Physiol Mol Plant Pathol 94:126–133CrossRefGoogle Scholar
  14. Eastmond PJ, Graham IA (2001) Re-examining the role of the glyoxylate cycle in oilseeds. Trends Plant Sci 6:72–78CrossRefGoogle Scholar
  15. El-Kouhen K, Blangy S, Ortiz E, Gardies AM, Ferte N, Arondel V (2005) Identification and characterization of a triacylglycerol lipase in Arabidopsis homologous to mammalian acid lipases. FEBS Lett 579:6067–6073CrossRefGoogle Scholar
  16. Ellinger D, Stingl N, Kubigsteltig II, Bals T, Juenger M, Pollmann S, Berger S, Schuenemann D, Mueller MJ (2010) DONGLE and DEFECTIVE IN ANTHER DEHISCENCE1 lipases are not essential for wound- and pathogen-induced jasmonate biosynthesis: redundant lipases contribute to jasmonate formation. Plant Physiol 153:114–127CrossRefGoogle Scholar
  17. Finch-Savage WE, Clay HA, Lynn JR, Morris K (2010) Towards a genetic understanding of seed vigour in small-seeded crops using natural variation in Brassica oleracea. Plant Sci 179:582–589CrossRefGoogle Scholar
  18. Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45CrossRefGoogle Scholar
  19. Kelly AA, Quettier AL, Shaw E, Eastmond PJ (2011) Seed storage oil mobilization is important but not essential for germination or seedling establishment in Arabidopsis. Plant Physiol 157:866–875CrossRefGoogle Scholar
  20. Kelly AA, Shaw E, Powers SJ, Kurup S, Eastmond PJ (2013) Suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase family during seed development enhances oil yield in oilseed rape (Brassica napus L.). Plant Biotechnol J 11:355–361CrossRefGoogle Scholar
  21. Knauer S, Holt AL, Rubio-Somoza I et al (2013) A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Dev Cell 24:125–132CrossRefGoogle Scholar
  22. Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36CrossRefGoogle Scholar
  23. Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307CrossRefGoogle Scholar
  24. Li-Beisson Y, Shorrosh B, Beisson F et al (2010) Acyl-lipid metabolism. Arabidopsis Book 8:e0133CrossRefGoogle Scholar
  25. Ling H, Zhao J, Zuo K, Qiu C, Yao H, Qin J, Sun X, Tang K (2006) Isolation and expression analysis of a GDSL-like lipase gene from Brassica napus L. J Biochem Mol Biol 39:297Google Scholar
  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT T method. Methods 25:402–408CrossRefGoogle Scholar
  27. Mu J, Tan H, Zheng Q et al (2008) LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol 148:10421054CrossRefGoogle Scholar
  28. Nesi N, Delourme R, Bregeon M, Falentin C, Renard M (2008) Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed. C R Biol 331:763–771CrossRefGoogle Scholar
  29. Penfield S, Li Y, Gilday AD, Graham S, Graham IA (2006a) Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell 18:1887–1899CrossRefGoogle Scholar
  30. Penfield S, Pinfield-Wells HM, Graham IA (2006b) Storage reserve mobilisation and seedling establishment in Arabidopsis. Arabidopsis Book 4:e0100CrossRefGoogle Scholar
  31. Pinfield-Wells H, Rylott EL, Gilday AD, Graham S, Job K, Larson TR, Graham IA (2005) Sucrose rescues seedling establishment but not germination of Arabidopsis mutants disrupted in peroxisomal fatty acid catabolism. Plant J 43:861–872CrossRefGoogle Scholar
  32. Quettier AL, Eastmond PJ (2009) Storage oil hydrolysis during early seedling growth. Plant Physiol Biochem 47:485–490CrossRefGoogle Scholar
  33. Rombolá-Caldentey B, Rueda-Romero P, Iglesias-Fernández R, Carbonero P, Oñate-Sánchez L (2014) Arabidopsis DELLA and two HD-ZIP transcription factors regulate GA signaling in the epidermis through the L1 box cis-element. Plant Cell 26:2905–2919CrossRefGoogle Scholar
  34. Schaller A, Stintzi A (2009) Enzymes in jasmonate biosynthesis-structure, function, regulation. Phytochemistry 70:1532–1538CrossRefGoogle Scholar
  35. Schilmiller AL, Koo AJ, Howe GA (2007) Functional diversification of acyl-coenzyme A oxidases in jasmonic acid biosynthesis and action. Plant Physiol 143:812–824CrossRefGoogle Scholar
  36. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506CrossRefGoogle Scholar
  37. Takahashi K, Shimada T, Kondo M, Tamai A, Mori M, Nishimura M, Hara-Nishimura I (2010) Ectopic expression of an esterase, which is a candidate for the unidentified plant cutinase, causes cuticular defects in Arabidopsis thaliana. Plant Cell Physiol 51:123–131CrossRefGoogle Scholar
  38. Tan H, Yang X, Zhang F et al (2011) Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol 156:1577–1588CrossRefGoogle Scholar
  39. Upton C, Buckley JT (1995) A new family of lipolytic enzymes? Trends Biochem Sci 20:178–179CrossRefGoogle Scholar
  40. van Erp H, Kelly AA, Menard G, Eastmond PJ (2014) Multigene engineering of triacylglycerol metabolism boosts seed oil content in Arabidopsis. Plant Physiol 165:30–36CrossRefGoogle Scholar
  41. Wang H (2004) Strategy on the mid and long-term development of rapeseed variety improvement in China. Chin J Oil Crop Sci 26:98–101Google Scholar
  42. Wang H (2010) Review and future development of rapeseed industry in China. Chin J Oil Crop Sci 2:023Google Scholar
  43. Wang WC, Menon G, Hansen G (2003) Development of a novel Agrobacterium-mediated transformation method to recover transgenic Brassica napus plants. Plant Cell Rep 22:274–281CrossRefGoogle Scholar
  44. Wang Z, Fang H, Chen Y, Chen K, Li G, Gu S, Tan X (2014) Overexpression of BnWRKY33 in oilseed rape enhances resistance to Sclerotinia sclerotiorum. Mol Plant Pathol 15:677–689CrossRefGoogle Scholar
  45. Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann Bot 111:1021–1058CrossRefGoogle Scholar
  46. Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2:e718CrossRefGoogle Scholar
  47. Xiang Y, Lu YH, Song M, Wang Y, Xu W, Wu L, Wang H, Ma Z (2015) Overexpression of a Triticum aestivum calreticulin gene TaCRT1 improves salinity tolerance in tobacco. PLoS One 10:e0140591CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Li-Na Ding
    • 1
  • Xiao-Juan Guo
    • 1
  • Ming Li
    • 1
  • Zheng-Li Fu
    • 1
  • Su-Zhen Yan
    • 1
  • Ke-Ming Zhu
    • 1
  • Zheng Wang
    • 1
  • Xiao-Li Tan
    • 1
    Email author
  1. 1.Institute of Life SciencesJiangsu UniversityZhenjiangChina

Personalised recommendations