Efficient transient protein expression in tomato cultivars and wild species using agroinfiltration-mediated high expression system

Abstract

Key message

The new transient protein expression system using the pBYR2HS vector is applicable to several tomato cultivars and wild species with high level of protein expression.

Abstract

Innovation and improvement of effective tools for transient protein expression in plant cells is critical for the development of plant biotechnology. We have created the new transient protein expression system using the pBYR2HS vector that led to about 4 mg/g fresh weight of protein expression in Nicotiana benthamiana. In this study, we validated the adaptability of this transient protein expression system by agroinfiltration to leaves and fruits of several tomato cultivars and wild species. Although the GFP protein was transiently expressed in the leaves and fruits of all tomato cultivars and wild species, we observed species-specific differences in protein expression. In particular, GFP protein expression was higher in the leaves and fruits of Micro-Tom, Solanum pimpinellifolium (0043) and S. pimpinellifolium (0049-w1) than in those of cultivars and wild species. Furthermore, Agrobacterium with GABA transaminase enhanced transient expression in tomato fruits of Micro-Tom. Taken together with these results, our system is applicable to several tomato cultivars and species as well as a model tomato, even though characteristics are often different among tomato cultivars or species. Thus, the system is an effective, simple, and valuable tool to achieve rapid transgene expression to examine gene function in tomato plant cells.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

GABA:

γ-Aminobutyric acid

gabT:

GABA transaminase

GFP:

Green fluorescence protein

RDR:

RNA-dependent RNA polymerases

TMV:

Tobamovirus

TRV:

Tobacco rattle virus

References

  1. Akihiro T, Koike S, Tani R, Tominaga T, Watanabe S, Iijima Y, Aoki K, Shibata D, Ashihara H, Matsukura C, Akama K, Fujimura T, Ezura H (2008) Biochemical mechanism on GABA accumulation during fruit development in tomato. Plant Cell Physiol 49:1378–1389

    CAS  Article  Google Scholar 

  2. Anderson AR, Moore LW (1979) Host specificity in the genus Agrobacterium. Phytopathology 69:320–323

    Article  Google Scholar 

  3. Ariizumi T, Higuchi K, Arakaki S, Sano T, Asamizu E, Ezura H (2011) Genetic suppression analysis in novel vacuolar processing enzymes reveals their roles in controlling sugar accumulation in tomato fruits. J Exp Bot 62:2773–2786

    CAS  Article  Google Scholar 

  4. Bally J, Nakasugi K, Jia F, Jung H, Ho SYW, Wong M, Paul CM, Naim F, Wood CC, Crowhurst RN, Hellens RP, Dale JL, Waterhouse PM (2015) The extremophile Nicotiana benthamiana has traded viral defence for early vigour. Nat Plants 1:15165

    CAS  Article  Google Scholar 

  5. Bochardt A, Hodal L, Palmgren G, Mattsson O, Okkels FT (1992) DNA methylation is involved in maintenance of an unusual expression pattern of an introduced gene. Plant Physiol 99:409–414

    CAS  Article  Google Scholar 

  6. Cha HJ, Pham MQ, Rao G, Bentley WE (1997) Expression of green fluorescent protein in insect larvae and its application for heterologous protein production. Biotechnol Bioeng 56:239–247

    CAS  Article  Google Scholar 

  7. Chow DC, Dreher MR, Trabbic-Carlson K, Chilkoti A (2006) Ultra-high expression of a thermally responsive recombinant fusion protein in E. coli. Biotechnol Prog 22:638–646

    CAS  Article  Google Scholar 

  8. Crawford LA, Bown AW, Breitkreuz KE, Guinel FC (1994) The synthesis of γ-aminobutyric acid in response to treatments reducing cytosolic pH. Plant Physiol 104:865–871

    CAS  Article  Google Scholar 

  9. Cruz-Mendívil A, Rivera-López J, Germán-Báez LJ, López-Meyer M, Hernández-Verdugo S, López-Valenzuela JA, Reyes-Moreno C, Valdez-Ortiz A (2011) A simple and efficient protocol for plant regeneration and genetic transformation of tomato cv. Micro-Tom from leaf explants. HortScience 46:1655–1660

    Google Scholar 

  10. De Cleene M, De Ley J (1976) The host range of crown gall. Bot Rev 42:389–466

    Article  Google Scholar 

  11. Fillatti JJ, Kiser J, Rose R, Comai L (1987) Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Bio/Technology 5:726

    CAS  Google Scholar 

  12. Frary A, Earle ED (1996) An examination of factors affecting the efficiency of Agrobacterium-mediated transformation of tomato. Plant Cell Rep 16:235–240

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu W, Phillips GC (2001) A combination of overgrowth-control antibiotics improves Agrobacterium tumefaciens-mediated transformation efficiency for cultivated tomato (L. esculentum). In Vitro Cell Biol 37:12–18

    CAS  Article  Google Scholar 

  14. Jiang J, Wing V, Xiet T, Shi X, Wang YP, Sokolov V (2016) DNA methylation analysis during the optimization of Agrobacterium-mediated transformation of soybean. Russ J Genet 52:66–73

    CAS  Article  Google Scholar 

  15. Kamoun S, Hraber P, Sobral B, Nuss D, Govers F (1999) Initial assessment of gene diversity for the oomycete pathogen Phytophthora infestans based on expressed sequences. Fungal Genet Biol 28:94–106

    CAS  Article  Google Scholar 

  16. Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    CAS  Article  Google Scholar 

  17. Lee MW, Yang Y (2006) Transient expression assay by agroinfiltration of leaves. Methods Mol Biol 323:225–229

    PubMed  Google Scholar 

  18. Lee SR, Talsky KB, Collins K (2009) A single RNA-dependent RNA polymerase assembles with mutually exclusive nucleotidyl transferase subunits to direct different pathways of small RNA biogenesis. RNA 15:1363–1374

    CAS  Article  Google Scholar 

  19. Li JF, Nebenfuhr A (2010) FAST technique for Agrobacterium-mediated transient gene expression in seedlings of Arabidopsis and other plant species. Cold Spring Harb Protoc 2010:pdb.prot5428

    PubMed  Google Scholar 

  20. Li J-F, Park E, von Arnim AG, Nebenführ A (2009) The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods 5:6

    Article  Google Scholar 

  21. Liao YW, Liu YR, Liang JY, Wang WP, Zhou J, Xia XJ, Zhou YH, Yu JQ, Shi K (2015) The relationship between the plant-encoded RNA-dependent RNA polymerase 1 and alternative oxidase in tomato basal defense against Tobacco mosaic virus. Planta 241:641–650

    CAS  Article  Google Scholar 

  22. Ling H-Q, Kriseleit D, Ganal MW (1998) Effect of ticarcillin/potassium clavulanate on callus growth and shoot regeneration in Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum Mill.). Plant Cell Rep 17:843–847

    CAS  Article  Google Scholar 

  23. Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol 23:718–723

    CAS  Article  Google Scholar 

  24. McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep 5:81–84

    CAS  Article  Google Scholar 

  25. Nonaka S, Arai C, Takayama M, Matsukura C, Ezura H (2017) Efficient increase of γ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci Rep 7:7057

    Article  Google Scholar 

  26. Orzaez D, Mirabel S, Wieland WH, Granell A (2006) Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit. Plant Physiol 140:3–11

    CAS  Article  Google Scholar 

  27. Palmgren G, Mattson O, Okkels FT (1993) Treatment of Agrobacterium or leaf disks with 5-azacytidine increases transgene expression in tobacco. Plant Mol Biol 21:429–435

    CAS  Article  Google Scholar 

  28. Park SH, Morris JL, Park JE, Hirschi KD, Smith RH (2003) Efficient and genotype-independent Agrobacterium-mediated tomato transformation. J Plant Physiol 160:1253–1257

    CAS  Article  Google Scholar 

  29. Paul A, Bakshi S, Sahoo DP, Kalita MC, Sahoo L (2012) Agrobacterium-mediated genetic transformation of Pogostemon cablin (Blanco) Benth. Using leaf explants: bactericidal effect of leaf extracts and counteracting strategies. Appl Biochem Biotechnol 166:1871–1895

    CAS  Article  Google Scholar 

  30. Postma WJ, Slootweg EJ, Rehman S, Finkers-Tomczak A, Tytgat TOG, van Gelderen K, Lozano-Torres JL, Roosien J, Pomp R, van Schaik C, Bakker J, Goverse A, Smant G (2012) The effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-LRR-mediated disease resistance in plants. Plant Physiol 160:944–954

    CAS  Article  Google Scholar 

  31. Ratanasut K, Rod-In W, Sujipuli K (2017) In planta Agrobacterium-mediated transformation of rice. Rice Sci 24:181–186

    Article  Google Scholar 

  32. Rolin D, Baldet P, Just D, Chevalier C, Biran M, Raymond P (2000) NMR study of low subcellular pH during the development of cherry tomato fruit. Aust J Plant Physiol 27:61–69

    CAS  Google Scholar 

  33. Saito T, Ariizumi T, Okabe Y, Asamizu E, Hiwasa-Tanase K, Fukuda N, Mizoguchi T, Yamazaki Y, Aoki K, Ezura H (2011) TOMATOMA: a novel tomato mutant database distributing Micro-Tom mutant collections. Plant Cell Physiol 52:283–296

    CAS  Article  Google Scholar 

  34. Schelp BJ, Bown AW, Faure D (2006) Extracellular γ-aminobutyrate mediates communication between plants and other organisms. Plant Physiol 142:1350–1352

    Article  Google Scholar 

  35. Scott JW, Harbaugh BK (1989) Micro-Tom: a miniature dwarf tomato. Agricultural Experiment Station, Institute of Food and Agricultural Sciences, University of Florida, Gainesville

  36. Sherif FM, Ahmed SS (1995) Basic aspects of GABA-transaminase in neuropsychiatric disorders. Clin Biochem 28:145–154

    CAS  Article  Google Scholar 

  37. Shikata M, Hoshikawa K, Ariizumi T, Fukuda N, Yamazaki Y, Ezura H (2016) TOMATOMA update: Phenotypic and metabolite information in the Micro-Tom mutant resource. Plant Cell Physiol 57:e11

    Article  Google Scholar 

  38. Sree Vidya CS, Manoharan M, Ranjit Kumar CT, Savtthri HS, Lakshmi Sita G (2000) Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum var. Pusa Ruby) with coat-protein gene of Physalis mottle tymovirus. J Plant Physiol 156:106–110

    Article  Google Scholar 

  39. Sun HJ, Uchii S, Watanabe S, Ezura H (2006) A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol 47:426–431

    CAS  Article  Google Scholar 

  40. Tabaeizadeh Z, Agharbaoui Z, Harrak H, Poysa V (1999) Transgenic tomato plants expressing a Lycopersicon chilense chitinase gene demonstrate improved resistance to Verticillium dahliae race 2. Plant Cell Rep 19:197–202

    CAS  Article  Google Scholar 

  41. Takayama M, Ezura H (2015) How and why does tomato accumulate a large amount of GABA in the fruit? Front Plant Sci 6:612

    Article  Google Scholar 

  42. Van Eck JM, Blowers AD, Earle ED (1995) Stable transformation of tomato cell cultures after bombardment with plasmid and YAC DNA. Plant Cell Rep 14:299–304

    Article  Google Scholar 

  43. Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692

    CAS  Article  Google Scholar 

  44. Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273

    CAS  Article  Google Scholar 

  45. Xie Z, Fan B, Chen C, Chen Z (2001) An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proc Natl Acad Sci USA 98:6516–6521

    CAS  Article  Google Scholar 

  46. Yamamoto T, Hoshikawa K, Ezura K, Okazawa R, Fujita S, Takaoka M, Mason HS, Ezura H, Miura K (2018) Improvement of the transient expression system for production of recombinant proteins in plants. Sci Rep 8:4755

    Article  Google Scholar 

  47. Ying XB, Dong L, Zhu H, Duan CG, Du QS, Lv DQ, Fang YY, Garcia JA, Fang RX, Guo HS (2010) RNA-dependent RNA polymerase 1 from Nicotiana tabacum suppresses RNA silencing and enhances viral infection in Nicotiana benthamiana. Plant Cell 22:1358–1372

    CAS  Article  Google Scholar 

  48. Yu D, Fan B, MacFarlane SA, Chen Z (2003) Analysis of the involvement of an inducible Arabidopsis RNA-dependent RNA polymerase in antiviral defense. Mol Plant Microbe Interact 16:206–216

    CAS  Article  Google Scholar 

  49. Zhao H, Tan Z, Wen X, Wang Y (2017) An improved syringe agroinfiltration protocol to enhance transformation efficiency by combinative use of 5-azacytidine, ascorbate acid and Tween-20. Plants 6:9

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ms. Yuri Nemoto at University of Tsukuba for technical support. All cultivars and wild species were provided by Tsukuba-Plant Innovation Research Center (T-PIRC), University of Tsukuba, through the National Bio-Resource Project (NBRP) of the Japan Agency for Research and Development (AMED), Japan. This work was supported by the Cabinet Office, Government of Japan, Cross-ministerial Strategic Innovation Promotion Program, “Technologies for creating next-generation agriculture, forestry and fisheries” (funding agency: Bio-oriented Technology Research Advancement Institution, NARO), by Grants-in-Aid for KAKENHI (JP16K07390) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, and by a Cooperative Research Grant from the Plant Transgenic Design Initiative, Gene Research Center, University of Tsukuba.

Author contribution statement

Conceived and designed the experiments: KH HE KM. Performed the experiments: KH SF NR KE TY KM. Contributed reagents/materials/analysis tools: KH NS HE KM. Wrote the paper: KH HE KM.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hiroshi Ezura or Kenji Miura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Fumihiko Sato.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hoshikawa, K., Fujita, S., Renhu, N. et al. Efficient transient protein expression in tomato cultivars and wild species using agroinfiltration-mediated high expression system. Plant Cell Rep 38, 75–84 (2019). https://doi.org/10.1007/s00299-018-2350-1

Download citation

Keywords

  • Tomato
  • Agroinfiltration
  • Transient protein expression