Skip to main content
Log in

Transcriptome analysis of Cd-treated switchgrass root revealed novel transcripts and the importance of HSF/HSP network in switchgrass Cd tolerance

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Transcriptome analysis of Cd-treated switchgrass roots not only revealed novel switchgrass transcripts and gene structures but also highlighted the indispensable role of HSF/HSP network in switchgrass Cd tolerance.

Abstract

Switchgrass (Panicum virgatum L.), a C4 perennial tall grass, can be used for revegetation of Cd-contaminated soil. In the present study, a comparative transcriptome analysis of Cd-treated switchgrass roots was conducted. The result revealed a total of 462 novel transcripts and refined gene structures of 2337 transcripts. KEGG pathway and Gene Ontology analyses of the differentially expressed genes (DEGs) suggested that activation of redox homeostasis and oxidation-related metabolic processes were the primary response to Cd stress in switchgrass roots. In particular, 21 out of 23 differentially expressed shock transcription factor genes (HSFs), and 22 out of 23 differentially expressed heat shock protein genes (HSPs) had increased expression levels after Cd treatment. Furthermore, over-expressing one HSP-encoding gene in Arabidopsis significantly improved plant Cd tolerance. The result highlighted the activation of the redox homeostasis and the involvement of the HSF/HSP network in re-establishing normal protein conformation and thus cellular homeostasis in switchgrass upon Cd stress. These DEGs, especially those of the HSF/HSP network, could be used as candidate genes for further functional studies toward improved plant Cd tolerance in switchgrass and related species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    Article  CAS  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  Google Scholar 

  • Boussama N, Ouariti O, Suzuki A, Ghorbal MH (1999) Cd-stress on nitrogen assimilation. J Plant Physiol 155:310–317

    Article  CAS  Google Scholar 

  • Cai SY, Zhang Y, Xu YP, Qi ZY, Li MQ, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Reiter RJ, Yu JQ, Zhou J (2017) HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants. J Pineal Res 62:e12387

    Article  Google Scholar 

  • Chmielowska-Bąk J, Gzyl J, Rucińska-Sobkowiak R, Arasimowicz-Jelonek M, Deckert J (2014) The new insights into cadmium sensing. Front Plant Sci 5:245

    PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Jl 16:735–743

    Article  CAS  Google Scholar 

  • Curie C, Briat JF (2011) Iron transport and signaling in plants. Annu Rev Plant Biol 54:183–206

    Article  Google Scholar 

  • Dillies MA, Rau A, Aubert J, Hennequetantier C, Jeanmougin M, Servant N, Keime C, Marot G, Castel D, Estelle J (2013) A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform 14:671–683

    Article  CAS  Google Scholar 

  • Driedonks N, Xu J, Peters JL, Park S, Rieu I (2015) Multi-level interactions between heat shock factors, heat shock proteins, and the redox system regulate acclimation to heat. Front Plant Sci 6:999

    Article  Google Scholar 

  • Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard CS (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629

    Article  CAS  Google Scholar 

  • Fan JL, Wei XZ, Wan LC, Zhang LY, Zhao XQ, Liu WZ, Hao HQ, Zhang HY (2011) Disarrangement of actin filaments and Ca²+ gradient by CdCl2 alters cell wall construction in Arabidopsis thaliana root hairs by inhibiting vesicular trafficking. J Plant Physiol 168:157–1167

    Google Scholar 

  • Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, Bateman A, Eddy SR (2015) HMMER web server: 2015 update. Nucleic Acids Res 43:30–38

    Article  Google Scholar 

  • Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangradorvegas A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285

    Article  CAS  Google Scholar 

  • Godt J, Scheidig F, Grossesiestrup C, Esche V, Brandenburg P, Reich A, Groneberg DA (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:22

    Article  Google Scholar 

  • Guan C, Li X, Jin C, Ji J, Wang G (2015) LcBiP, a endoplasmic reticulum chaperone binding protein gene from Lycium chinense, confers cadmium tolerance in transgenic tobacco. Biotech Prog 31:358–368

    Article  CAS  Google Scholar 

  • Gudenschwager O, González-Agüero M, Defilippi BG (2012) A general method for high-quality RNA isolation from metabolite-rich fruits. S Afr J Bot 83:186–192

    Article  CAS  Google Scholar 

  • Guo Q, Meng L, Zhang YN, Mao PC, Tian XX, Li SS, Zhang L (2017) Antioxidative systems, metal ion homeostasis and cadmium distribution in Iris lactea exposed to cadmium stress. Ecotoxicol Environ Saf 139:50–55

    Article  CAS  Google Scholar 

  • Gupta DK, Pena LB, Romero-Puertas MC, Hernández A, Inouhe M, Sandalio LM (2017) NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity. Plant Cell Environ 40:509–526

    Article  CAS  Google Scholar 

  • Houben D, Couder E, Sonnet P (2013) Leachability of cadmium, lead, and zinc in a long-term spontaneously revegetated slag heap: implications for phytostabilization. J Soil Sediment 13:543–554

    Article  CAS  Google Scholar 

  • Huang LK, Yan HD, Jiang XM, Zhang XQ, Zhang YW, Xiu H, Yu Z, Miao JM, Xu B, Frazier T (2014) Evaluation of candidate reference genes for normalization of quantitative RT-PCR in switchgrass under various abiotic stress conditions. Bioenergy Res 7:1201–1211

    Article  CAS  Google Scholar 

  • Ichizen N, Takahashi H, Nishio T, Liu G, Li D, Huang J (2005) Impacts of switchgrass (Panicum virgatum L.) planting on soil erosion in the hills of the Loess Plateau in China. Weed Biol Manag 5:31–34

    Article  Google Scholar 

  • Järup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharm 238:201–208

    Article  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  Google Scholar 

  • Kimura T, Kambe T (2016) The functions of metallothionein and ZIP and ZnT transporters: an overview and perspective. Int J Mol Sci 17:336–357

    Article  Google Scholar 

  • Kolde R (2015) “pheatmap: Pretty Heatmaps. R package version 1.0.2”

  • Kummerfeld SK, Teichmann SA (2006) DBD: a transcription factor prediction database. Nucleic Acids Res 34:74–81

    Article  Google Scholar 

  • Liu L, Cui F, Li Q, Yin B, Zhang H, Lin B, Wu Y, Xia R, Tang S, Xie Q (2011) The endoplasmic reticulum-associated degradation is necessary for plant salt tolerance. Cell Res 21:957–969

    Article  CAS  Google Scholar 

  • Liu C, Lou L, Deng J, Li D, Yuan S, Cai Q (2016) Morph-physiological responses of two switchgrass (Panicum virgatum L.) cultivars to cadmium stress. Grassl Sci 62:92–101

    Article  CAS  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol 15:550

    Article  Google Scholar 

  • Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    Article  CAS  Google Scholar 

  • Mclaughlin SB, Kszos LA (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28:515–535

    Article  Google Scholar 

  • Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-Seq reads. Nat Biotechnol 33:290–295

    Article  CAS  Google Scholar 

  • Piper P, Truman A, Millson S, Nuttall J (2006) Hsp90 chaperone control over transcriptional regulation by the yeast Slt2(Mpk1)p and human ERK5 mitogen-activated protein kinases (MAPKs). Biochem Soc Trans 34:783–785

    Article  CAS  Google Scholar 

  • Podar D, Scherer J, Noordally Z, Herzyk P, Nies D, Sanders D (2012) Metal selectivity determinants in a family of transition metal transporters. J Biol Chem 287:3185–3196

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Abbas T, Zia-Ur-Rehman M, Hannan F, Keller C, Al-Wabel MI, Yong SO (2016a) Cadmium minimization in wheat: a critical review. Ecotox Environ Safe 130:43–53

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Adrees M, Rizvi H, Zia-Ur-Rehman M, Hannan F, Qayyum MF, Hafeez F, Yong SO (2016b) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res 23:17859–17880

    Article  CAS  Google Scholar 

  • Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L (2011) Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol 12:R22

    Article  CAS  Google Scholar 

  • Rodriguez F, Arsèneploetze F, Rist W, Rüdiger S, Schneidermergener J, Mayer MP, Bukau B (2008) Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Mol Cell 32:347–358

    Article  CAS  Google Scholar 

  • Sanchez Y, Taulien J, Borkovich KA, Lindquist S (1992) Hsp104 is required for tolerance to many forms of stress. Embo J 11:2357–2364

    Article  CAS  Google Scholar 

  • Sanderson MA (2002) Cadmium application and pH effects on growth and cadmium accumulation in switchgrass. Commun Soil Sci Plan 33:1187–1203

    Article  Google Scholar 

  • Sauer B, Ruppert H (2013) Bioenergy production as an option for polluted soils—a non-phytoremediation approach. Springer Netherlands, Dordrecht

    Book  Google Scholar 

  • Sebastian A, Prasad MNV (2014) Cadmium minimization in rice. A review. Agron Sustain Dev 34:155–173

    Article  CAS  Google Scholar 

  • Shim D, Hwang JU, Lee J, Lee S, Choi Y, An G, Martinoia E, Lee Y (2009) Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell 21:4031–4043

    Article  CAS  Google Scholar 

  • Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, Liu Y, Chen R, Zhao Y (2013) Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res 41:e166–e166

    Article  CAS  Google Scholar 

  • Tamás MJ, Sharma SK, Ibstedt S, Jacobson T, Christen P (2014) Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules 4:252–267

    Article  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515

    Article  CAS  Google Scholar 

  • Uttenweiler A, Schwarz H, Neumann H, Mayer A (2007) The vacuolar transporter chaperone (VTC) complex is required for microautophagy. Mol Biol Cell 18:166–175

    Article  CAS  Google Scholar 

  • Wan L, Zhang H (2012) Cadmium toxicity: effects on cytoskeleton, vesicular trafficking and cell wall construction. Plant Signal Behav 7:345–348

    Article  CAS  Google Scholar 

  • Wang Q, Gu M, Ma X, Zhang H, Wang Y, Cui J, Gao W, Jing G (2015) Model optimization of cadmium and accumulation in switchgrass (Panicum virgatum L.): potential use for ecological phytoremediation in Cd-contaminated soils. Environ Sci Pollut Res 22:16758–16771

    Article  CAS  Google Scholar 

  • Wang T, Yuan Y, Zou H, Yang J, Zhao S, Ma Y, Wang Y, Bian J, Liu X, Gu J (2016) The ER stress regulator Bip mediates cadmium-induced autophagy and neuronal senescence. Sci Rep UK 6:38091

    Article  CAS  Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50(6):775–780

    Article  CAS  Google Scholar 

  • Xu Y, Singer MA, Lindquist S (1999) Maturation of the tyrosine kinase c-src as a kinase and as a substrate depends on the molecular chaperone Hsp90. P Natl Acad Sci USA 96:109–114

    Article  CAS  Google Scholar 

  • Xu B, Huang L, Shen Z, Welbaum GE, Zhang X, Zhao B (2011) Selection and characterization of a new switchgrass (Panicum virgatum L.) line with high somatic embryogenic capacity for genetic transformation. Sci Hortic Amst 129:854–861

    Article  Google Scholar 

  • Xu H, Xu W, Xi H, Ma W, He Z, Ma M (2013) The ER luminal binding protein (BiP) alleviates Cd2+-induced programmed cell death through endoplasmic reticulum stress-cell death signaling pathway in tobacco cells. J Plant Physiol 170:1434–1441

    Article  CAS  Google Scholar 

  • Xu SS, Lin SZ, Lai ZX (2015) Cadmium impairs iron homeostasis in Arabidopsis thaliana by increasing the polysaccharide contents and the iron-binding capacity of root cell walls. Plant Soil 392:71–85

    Article  CAS  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-Seq: accounting for selection bias. Genome Biol 11:1–12

    Article  Google Scholar 

  • Yue R, Lu C, Qi J, Han X, Yan S, Guo S, Liu L, Fu X, Chen N, Yin H, Chi H, Tie S (2016) Transcriptome analysis of cadmium-treated roots in maize (Zea mays L.). Front Plant Sci 7:1298

    PubMed  PubMed Central  Google Scholar 

  • Zhang C, Guo J, Lee DK, Anderson E, Huang H (2015) Growth responses and accumulation of cadmium in switchgrass (Panicum virgatum L.) and prairie cordgrass (Spartina pectinata Link). Rsc Adv 5:83700–83706

    Article  CAS  Google Scholar 

  • Zuccarelli R, Coelho ACP, Peres LEP, Freschi L (2017) Shedding light on NO homeostasis: light as a key regulator of glutathione and nitric oxide metabolisms during seedling deetiolation. Nitric Oxide 68:77–90

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Chuansheng Mei at Virginia Tech and Dr. Linkai Huang at Sichuan Agricultural University for their assistance with materials and technical suggestions.

Funding

The project was funded by Grants 31372359 and 31572455 from the National Natural Science Foundation of China and by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingsheng Cai or Bin Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Availability of data and materials

The dataset supporting the conclusions of this article is available in the NCBI SRA repository ‘SRR5838951’ in http://www.ncbi.nlm.nih.gov/sra/?term=SRR5838951. The dataset supporting the conclusions of this article is included in the article and its supplementary material.

Additional information

Communicated by Eugenio Benvenuto.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, G., Yuan, S., Wen, X. et al. Transcriptome analysis of Cd-treated switchgrass root revealed novel transcripts and the importance of HSF/HSP network in switchgrass Cd tolerance. Plant Cell Rep 37, 1485–1497 (2018). https://doi.org/10.1007/s00299-018-2318-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-018-2318-1

Keywords

Navigation