Skip to main content
Log in

Current advances in chickpea genomics: applications and future perspectives

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Chickpea genomics promises to illuminate our understanding of genome organization, structural variations, evolutionary and domestication-related insights and fundamental biology of legume crops. Unprecedented advancements of next generation sequencing (NGS) technologies have enabled in decoding of multiple chickpea genome sequences and generating huge genomic resources in chickpea both at functional and structural level. This review is aimed to update the current progress of chickpea genomics ranging from high density linkage map development, genome-wide association studies (GWAS), functional genomics resources for various traits, emerging role of abiotic stress responsive coding and non-coding RNAs after the completion of draft chickpea genome sequences. Additionally, the current efforts of whole genome re-sequencing (WGRS) approach of global chickpea germplasm to capture the global genetic diversity existing in the historically released varieties across the world and increasing the resolution of the previously identified candidate gene(s) of breeding importance have been discussed. Thus, the outcomes of these genomics resources will assist in genomics-assisted selection and facilitate breeding of climate-resilient chickpea cultivars for sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Yan et al. (2016)

Similar content being viewed by others

References

  • Abbo S, Jens Berger J, Turner NC (2003a) Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Funct Plant Biol 30:1081–1087

    Article  Google Scholar 

  • Abbo S, Shtienberg D, Lichtenzveig J, Lev-Yadun S, Gopher A (2003b) The chickpea, summer cropping, and a new model for pulse domestication in the ancient near east. Q Rev Biol 78:435–448

    Article  PubMed  Google Scholar 

  • Agarwal G, Jhanwar S, Priya P, Singh VK, Saxena MS, Parida SK, Garg R, Tyagi AK, Jain M (2012) Comparative analysis of kabuli chickpea transcriptome with desi and wild chickpea provides a rich resource for development of functional markers. PLoS One 7:e52443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ali H, Sha TM, Iqbal N, Atta BM, Haq MA (2009) Mutagenic induction of double-podding trait in different genotypes of chickpea and their characterization by STMS marker. Plant Breed 129:116–119

    Article  CAS  Google Scholar 

  • Ali L, Deokar A, Caballo C, Taran B, Gil J, Chen W, Millan T, Rubio J (2016) Fine mapping for double podding gene in chickpea. Theor Appl Genet 129:77–86

    Article  PubMed  CAS  Google Scholar 

  • Bajaj D, Saxena MS, Kujur A, Das S, Badoni S, Tripathi S et al (2015) Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea. J Exp Bot 66:1271–1290

    Article  PubMed  CAS  Google Scholar 

  • Bajaj D, Upadhyaya HD, Das S, Kumar V, Gowda CL, Sharma S, Tyagi AK, Parida SK (2016a) Identification of candidate genes for dissecting complex branch number trait in chickpea. Plant Sci 245:61–70

    Article  PubMed  CAS  Google Scholar 

  • Bajaj D, Srivastava R, Nath M, Tripathi S, Bharadwaj C, Upadhyaya HD, Tyagi AK, Parida SK (2016b) EcoTILLING-based association mapping efficiently delineates functionally relevant natural allelic variants of candidate genes governing agronomic traits in chickpea. Front Plant Sci 7:450

    Article  PubMed  PubMed Central  Google Scholar 

  • Beeckman T, Przemeck GK, Stamatiou G, Lau R, Terryn N, De Rycke R, Inzé D, Berleth T (2002) Genetic complexity of cellulose synthase a gene function in Arabidopsis embryogenesis. Plant Physiol 130:1883–1893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bevan MW, Uauy C, Wulff BB, Zhou J, Krasileva K, Clark MD (2017) Genomic innovation for crop improvement. Nature 543:346–354

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharjee A, Ghangal R, Garg R, Jain M (2015) Genome-wide analysis of homeobox gene family in legumes: identification, gene duplication and expression profiling. PLoS One 10:e0119198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bohra A, Jha UC, Singh B, Soren KR, Singh IP, Chaturvedi SK, Nadarajan N, Barh D (2013) Omics approaches in pulses. In: Barh D (ed) OMICS applications in crop science. Taylor & Francis LLC, London, pp 102–138

    Google Scholar 

  • Bortesi L, Fischer RB (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotech Adv 33:41–52

    Article  CAS  Google Scholar 

  • Brachi B, Morris GP, Borevitz JO (2011) Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol 12:232

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho S, Chen W, Muehlbauer FJ (2004) Pathotype-specific factors inchickpea (Cicer arietinum L.) for quantitative resistance to ascochyta blight. Theor Appl Genet 109:733–739

    Article  PubMed  Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de Los Campos G, Burgueño J, González-Camacho JM, Pérez-Elizalde S, Beyene Y, Dreisigacker S, Singh R, Zhang X, Gowda M, Roorkiwal M, Rutkoski J, Varshney RK (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22:961–975

    Article  PubMed  CAS  Google Scholar 

  • Daba K, Deokar A, Banniza S, Warkentin TD, Tar’an B (2016) QTL mapping of early flowering and resistance to ascochyta blight in chickpea. Genome 59:413–425

    Article  PubMed  CAS  Google Scholar 

  • Das S, Upadhyaya HD, Bajaj D, Kujur A, Badoni S, Kumar V, Tripathi S, Gowda CL, Sharma S, Singh S, Tyagi AK, Parida SK (2015) Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res 22:193–203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Das S, Singh M, Srivastava R, Bajaj D, Saxena MS, Rana JC, Bansal KC, Tyagi AK, Parida SK (2016) mQTL-seq delineates functionally relevant candidate gene harbouring a major QTL regulating pod number in chickpea. DNA Res 23:53–65

    PubMed  CAS  Google Scholar 

  • Deokar AA, Ramsay L, Sharpe AG, Diapari M, Sindhu A, Bett K, Warkentin TD, Tar’an B (2014) Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly. BMC Genom 15:708

    Article  CAS  Google Scholar 

  • Deschamps S, Llaca V, May GD (2012) Genotyping-by-sequencing in plants. Biol (Basel) 1:460–483

    Google Scholar 

  • Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19:592–601

    Article  PubMed  CAS  Google Scholar 

  • Diapari M, Sindhu A, Bett K, Deokar A, Wartkentin TD, Taran B (2014) Genetic diversity and association mapping of iron and zinc concentrations in chickpea (Cicer arietinum L.). Genome 57:459–468

    Article  PubMed  CAS  Google Scholar 

  • Dinari A, Niazi A, Afsharifar AR, Ramezani A (2013) Identification of upregulated genes under cold stress in cold-tolerant chickpea using the cDNA-AFLP approach. PLoS One 8:e52757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doddamani D, Mohan AVSK., Katta MAVSK., Khan AW, Agarwal G, Shah TM, Varshney RK (2014) CicArMiSatDB: the chickpea microsatellite database. BMC Bioinform 15:212

    Article  CAS  Google Scholar 

  • Doddamani D, Khan AW, Katta MAVSK., Agarwal G, Thudi M, Ruperao P, Edwards D, Varshney RK (2015) CicArVarDB: SNP and InDel database for advancing genetics research and breeding applications in chickpea. Database (Oxford) 19:2015

    Google Scholar 

  • Dwivedi V, Parida SK, Chattopadhyay D (2017) A repeat length variation in myo-inositol monophosphatase gene contributes to seed size trait in chickpea. Sci Rep 7:4764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • FAOSTAT (2009) Faostat.fao.org/site/567/DesktopDefault.aspx?PageID = 567 anchor

  • FAOSTAT (2014). http://faostat.fao.org/site/339/default.aspx. Accessed 25 Aug 2016

  • Flandez-Galvez H, Ades PK, Ford R, Pang ECK, Taylor PWJ (2003) QTL analysis for ascochyta blight resistance in an intraspecific population of chickpea (Cicer arietinum L.). Theor Appl Genet 107:1257–1265

    Article  PubMed  CAS  Google Scholar 

  • Gagne JM, Downes BP, Shiu SH, Durski AM, Vierstra RD (2002) The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci USA 99:11519–11524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garg R, Patel RK, Tyagi AK, Jain M (2011a) De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res 18:53–63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garg R, Patel RK, Jhanwar S, Priya P, Bhattacharjee A, Yadav G, Bhatia S, Chattopadhyay D, Tyagi AK, Jain M (2011b) Gene discovery and tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development. Plant Physiol 156:1661–1678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garg R, Kumari R, Tiwari S, Goyal S (2014) Genomic survey, gene expression analysis and structural modeling suggest diverse roles of DNA methyltransferases in legumes. PLoS One 9:e88947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garg R, Bhattacharjee A, Jain M (2015) Genome-scale transcriptomic insights into molecular aspects of abiotic stress responses in chickpea. Plant Mol Biol Rep 33:388–400

    Article  CAS  Google Scholar 

  • Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, Varshney RK, Bhatia S, Jain M (2016) Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep 6:19228

  • Garg R, Singh VK, Rajkumar MS, Kumar V, Jain M (2017) Global transcriptome and coexpression network analyses reveal cultivar-specific molecular signatures associated with seed development and seed size/weight determination in chickpea. Plant J 91:1088–1107

    Article  PubMed  CAS  Google Scholar 

  • Garg T, Mallikarjuna BP, Thudi M, Samineni S, Singh S, Sandhu JS, Kaur L, Singh I, Sirari A, Basandrai AK, Basandrai D, Varshney RK, Gaur PM (2018) Identification of QTLs for resistance to Fusarium wilt and Ascochyta blight in a recombinant inbred population of chickpea (Cicer arietinum L.). Euphytica 214:1–11

    Article  Google Scholar 

  • Gaur PM, Gour VK (2002) A gene producing one to nine flowers per flowering node in chickpea. Euphytica 128:231–235

    Article  CAS  Google Scholar 

  • Gaur PM, Jukanti AK, Varshney RK (2012) Impact of genomic technologies on chickpea breeding strategies. Agron 2:199–222

    Article  Google Scholar 

  • Gaur R, Jeena G, Shah N, Gupta S, Pradhan S, Tyagi AK, Jain M, Chattopadhyay D, Bhatia S (2015a) High density linkage mapping of genomic and transcriptomic SNPs for synteny analysis and anchoring the genome sequence of chickpea. Sci Rep 5:13387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaur PM, Samineni S, Tripathi S, Varshney RK, Gowda CLL (2015b) Allelic relationships of flowering time genes in chickpea. Euphytica 203:295–308

    Article  CAS  Google Scholar 

  • Gayali S, Acharya S, Lande NV, Pandey A, Chakraborty S, Chakraborty N (2016) CicerTransDB 1.0: a resource for expression and functional study of chickpea transcription factors. BMC Plant Biol 16:169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta S, Chakraborti D, Sengupta A, Basu D, Das S (2010) Primary metabolism of chickpea is the initial target of wound inducing early sensed Fusarium oxysporum f. sp ciceri race 1. PLoS One 5:e9030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta S, Kumar T, Verma S, Bharadwaj C, Bhatia S (2015a) Development of gene-based markers for use in construction of the chickpea (Cicer arietinum L.) genetic linkage map and identification of QTLs associated with seed weight and plant height. Mol Biol Rep 42:1571–1580

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Garg V, Kant C, Bhatia S (2015b) Genome-wide survey and expression analysis of F-box genes in chickpea. BMC Genom 16:67

    Article  CAS  Google Scholar 

  • Gupta S, Nawaz K, Parween S, Roy R, Sahu K, Kumar Pole A, Khandal H, Srivastava R, Kumar Parida S, Chattopadhyay D (2017) Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement. DNA Res 24:1–10

    PubMed  Google Scholar 

  • Ha CV, Nasr Esfahani M, Watanabe Y, Tran UT, Sulieman S, Mochida K, Nguyen DV, Tran LS (2014) Genome-wide identification and expression analysis of the CaNAC family members in chickpea during development, dehydration and ABA treatments. PLoS One 9:e114107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690

    Article  Google Scholar 

  • Heffner EL, Jannink JL, Sorrells ME (2011) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4:65–75

    Article  Google Scholar 

  • Hegde VS (2010) Genetics of flowering time in chickpea in a semi-arid environment. Plant Breed 129:683–687

    Article  CAS  Google Scholar 

  • Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kudapa H, Tuteja R, Kumar A, Bhanuprakash A, Mulaosmanovic B, Gujaria N, Krishnamurthy L, Gaur PM, Kavikishor PB, Shah T, Srinivasan R, Lohse M, Xiao Y, Town CD, Cook DR, May GD, Varshney RK (2011) Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol J 9:922–931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu J, Sun L, Ding Y (2013) Identification of conserved microRNAs and their targets in chickpea (Cicer arietinum L.). Plant Signal Behav 8:e23604

    Article  PubMed  Google Scholar 

  • Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551

    Article  PubMed  CAS  Google Scholar 

  • Iruela M, Rubio J, Barro F, Cubero JI, Millan T, Gill J (2006) Detection of two quantitative trait loci for resistance to ascochyta blight in an intra-specific cross of chickpea (Cicer arietinum L.): development of SCAR markers associated with resistance. Theor Appl Genet 112:278–287

    Article  PubMed  CAS  Google Scholar 

  • Jadhav AA, Rayate SJ, Mhase LB, Thudi M, Chitikineni A, Harer PN, Jadhav AS, Varshney RK, Kulwal PL (2015) Marker-trait association study for protein content in chickpea (Cicer arietinum L.). J Genet 94:279–286

    Article  PubMed  CAS  Google Scholar 

  • Jaganathan D, Thudi M, Kale S, Azam S, Roorkiwal M, Gaur PM, Kishor PB, Nguyen H, Sutton T, Varshney RK (2015) Genotyping-by-sequencing based intra-specific genetic map refines a ‘‘QTL-hotspot” region for drought tolerance in chickpea. Mol Genet Genomics 290:559–571

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G, Yadav M, Kant C, Sharma P, Yadav G, Bhatia S, Tyagi AK, Chattopadhyay D (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Chevala VV, Garg R (2014) Genome-wide discovery and differential regulation of conserved and novel microRNAs in chickpea via deep sequencing. J Exp Bot 65:5945–5958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jain M, Pole AK, Singh VK, Ravikumar RL, Garg R (2015) Discovery of molecular markers for Fusarium wilt via transcriptome sequencing of chickpea cultivars. Mol Breed 35:198

    Article  CAS  Google Scholar 

  • Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177

    Article  PubMed  CAS  Google Scholar 

  • Jayashree B, Buhariwalla HK, Shinde S, Crouch JH (2005) A legume genomics resource: the chickpea root expressed sequence tag database. Electron J Biotechnol 8:128–133

    Article  CAS  Google Scholar 

  • Jha UC, Chaturvedi SK, Bohra A, Basu PS, Khan MS, Debmalya B (2014a) Abiotic stresses, constraints and improvement strategies in chickpea. Plant Breed 133:163–178

    Article  Google Scholar 

  • Jha UC, Bohra A, Singh NP (2014b) Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed 133:679–701

    Article  Google Scholar 

  • Jha UC, Barh D, Parida S, Jha R, Singh NP (2016) Whole-genome resequencing: Current status and future prospects in genomics-assisted crop improvement. In: Khan MS, Khan IA, Barh D (eds) Applied molecular biotechnology. CRC Press, Boca Raton, pp 187–212

    Chapter  Google Scholar 

  • Jha UC, Bohra A, Jha R, Parida S (2017) Integrated ‘omics’ approaches to sustain major global grain legume productivity under heat stress. Plant Breed 136:437–459

    Article  CAS  Google Scholar 

  • Jha UC, Jha R, Bohra A, Parida SK, Kole PC, Thakro V, Singh D, Singh NP (2018) Population structure and association analysis of heat stress relevant traits in chickpea (Cicer arietinum L.). 3 Biotech 8:43

    Article  PubMed  Google Scholar 

  • Jhanwar S, Priya P, Garg R, Parida S, Tyagi AK, Jain M (2012) Transcriptome sequencing of wild chickpea as a rich resource for marker development. Plant Biotechnol J 10:690–702

    Article  PubMed  CAS  Google Scholar 

  • Jiao Y, Zhao H, Ren L, Song W, Zeng B, Guo J, Wang B, Liu Z, Chen J, Li W, Zhang M, Xie S, Lai J (2012) Genome-wide genetic changes during modern breeding of maize. Nat Genet 44:812–815

    Article  PubMed  CAS  Google Scholar 

  • Jingade P, Ravikumar RL (2015) Development of molecular map and identification of QTLs linked to Fusarium wilt resistance in chickpea. J Genet 94:723–729

    Article  PubMed  CAS  Google Scholar 

  • Joshi-Saha A, Reddy KS (2015) Repeat length variation in the 5′UTR of myo-inositol monophosphatase gene is related to phytic acid content and contributes to drought tolerance in chickpea (Cicer arietinum L.). J Exp Bot 66:5683–5690

    Article  PubMed  CAS  Google Scholar 

  • Jukanti AK, Gaur PM, Gowda CL, Chibbar RN (2012) Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. Br J Nutr 1:S11-26

    Google Scholar 

  • Kale SM, Jaganathan D, Ruperao P, Chen C, Punna R, Kudapa H, Thudi M, Roorkiwal M, Katta MA, Doddamani D, Garg V, Kishor PB, Gaur PM, Nguyen HT, Batley J, Edwards D, Sutton T, Varshney RK (2015) Prioritization of candidate genes in “QTL-hotspot” region for drought tolerance in chickpea (Cicer arietinum L.). Sci Rep 5:15296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kant C, Pradhan S, Bhatia S (2016) Dissecting the root nodule transcriptome of chickpea (Cicer arietinum L.). PLoS One 11:e0157908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kant C, Pandey V, Verma S, Tiwari M, Kumar S, Bhatia S (2017) Transcriptome analysis in chickpea (Cicer arietinum L.): applications in study of gene expression, non-coding RNA prediction, and molecular marker development. In: Cirillo PDR (ed.) Applications of RNA-seq and omics strategies—from microorganisms to human health. https://doi.org/10.5772/intechopen.69884 (InTech)

  • Khajuria YP, Saxena MS, Gaur R, Chattopadhyay D, Jain M, Parida SK, Bhatia S (2015) Development and integration of genome-wide polymorphic microsatellite markers onto a reference linkage map for constructing a high-density genetic map of chickpea. PLoS One 10:e0125583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khemka N, Singh VK, Garg R, Jain M (2016) Genome-wide analysis of long intergenic non-coding RNAs in chickpea and their potential role in flower development. Sci Rep 6:33297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kohli D, Joshi G, Deokar AA, Bhardwaj AR, Agarwal M, Katiyar-Agarwal S, Srinivasan R, Jain PK (2014) Identification and characterization of wilt and salt stress-responsive microRNAs in chickpea through high-throughput sequencing. PLoS One 9:e108851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kudapa H, Azam S, Sharpe AG, Taran B, Li R, Deonovic B, Cameron C, Farmer AD, Cannon SB, Varshney RK (2014) Comprehensive transcriptome assembly of chickpea (Cicer arietinum L.) using sanger and next generation sequencing platforms: development and applications. PLoS One 9:e86039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kujur A, Bajaj D, Saxena MS, Tripathi S, Upadhyaya HD, Gowda CL, Singh S, Jain M, Tyagi AK, Parida SK (2013) Functionally relevant microsatellite markers from chickpea transcription factor genes for efficient genotyping applications and trait association mapping. DNA Res 20:355–374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R, Shree T, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CL, Sharma S, Singh S, Tyagi AK, Parida SK (2015a) Employing genome-wide SNP discovery and genotyping strategy to extrapolate the natural allelic diversity and domestication patterns in chickpea. Front Plant Sci 6:162

    Article  PubMed  PubMed Central  Google Scholar 

  • Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R, Shree T, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CL, Sharma S, Singh S, Tyagi AK, Parida SK (2015b) A genome-wide SNP scan accelerates trait-regulatory genomic loci identification in chickpea. Sci Rep 5:11166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kujur A, Upadhyaya HD, Shree T, Bajaj D, Das S, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CL, Sharma S, Singh S, Tyagi AK, Parida SK (2015c) Ultra-high density intra-specific genetic linkage maps accelerate identification of functionally relevant molecular tags governing important agronomic traits in chickpea. Sci Rep 5:9468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kujur A, Upadhyaya HD, Bajaj D, Gowda CL, Sharma S, Tyagi AK, Parida SK (2016) Identification of candidate genes and natural allelic variants for QTLs governing plant height in chickpea. Sci Rep 6:27968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar J, van Rheenen HA (2000) A major gene for time of flowering in chickpea. J Hered 91:67–68

    Article  PubMed  CAS  Google Scholar 

  • Kumar K, Srivastava V, Purayannur S, Kaladhar VC, Cheruvu PJ, Verma PK (2016) WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene(s). DNA Res 23:225–239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lechner E, Achard P, Vansiri A, Potuschak T, Genschik P (2006) F-box proteins everywhere. Curr Opin Plant Biol 9:631–638

    Article  PubMed  CAS  Google Scholar 

  • Leo AE, Linde CC, Ford R (2016) Defence gene expression profiling to Ascochyta rabiei aggressiveness in chickpea. Theor Appl Genet 129:1333–1345

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Ruperao P, Batley J, Edwards D, Davidson J, Hobson K, Sutton T (2017) Genome analysis identified novel candidate genes for ascochyta blight resistance in chickpea using whole genome re-sequencing data. Front Plant Sci 8:1–13

    Google Scholar 

  • Li Y, Ruperao P, Batley J, Edwards D, Khan T, Colmer TD, Pang J, Siddique KH, Sutton T (2018a) Investigating drought tolerance in chickpea using genome-wide association mapping and genomic selection based on whole-genome resequencing data. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00190

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Rasheed A, Hickey LT, He Z (2018b) Fast-forwarding genetic gain. Trends Plant Sci 23:183–186

    Article  Google Scholar 

  • Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L, Campbell BC, Hu W, Innes DJ, Han X, Cruickshank A, Dai C, Frère C, Zhang H, Hunt CH, Wang X, Shatte T, Wang M, Su Z, Li J, Lin X, Godwin ID, Jordan DR, Wang J (2013) Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun 4:2320

    Article  PubMed  PubMed Central  Google Scholar 

  • Madrid E, Rajesh PN, Rubio J, Gil J, Millán T, Chen W (2012) Characterization and genetic analysis of an EIN-4 like sequence (CaETR-1) located in QTLAR1 implicated in ascochyta blight resistance in chickpea. Plant Cell Rep 36:1033–1042

    Article  CAS  Google Scholar 

  • Madrid E, Seoane P, Claros MG, Barro F, Rubio J, Gil J, Millan T (2014) Genetic and physical mapping of the QTLAR3 controlling blight resistance in chickpea (Cicer arietinum L). Euphytica 198:69–78

    Article  CAS  Google Scholar 

  • Mallikarjuna BP, Samineni S, Thudi M, Sajja SB, Khan AW (2017) Molecular mapping of flowering time major genes and QTLs in chickpea (Cicer arietinum L.). Front Plant Sci 8:1140

    Article  PubMed  PubMed Central  Google Scholar 

  • Meuwissen THE, Goddard ME (2007) Multipoint identity-by-descent prediction using dense markers to map quantitative trait loci and estimate effective population size. Genetics 176:2551–2560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  PubMed Central  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis—a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohammadi P, Bahramnejad B, Badakhshan H, Kanouni H (2015) DNA methylation changes in fusarium wilt resistant and sensitive chickpea genotypes (Cicer arietinum L.). Physiol Mol Plant Pathol 91:72–80

    Article  CAS  Google Scholar 

  • Molina C, Rotter B, Horres R, Udupa SM, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, Winter P (2008) SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genom 9:553

    Article  CAS  Google Scholar 

  • Molina C, Zaman-Allah M, Khan F, Fatnassi N, Horres R, Rotter B, Steinhauer D, Amenc L, Drevon JJ, Winter P, Kahl G (2011) The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE. BMC Plant Biol 11:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakaya A, Isobe SN (2012) Will genomic selection be a practical method for plant breeding? Ann Bot 110:1303–1316

    Article  PubMed  PubMed Central  Google Scholar 

  • Or E, Hovav R, Abbo S (1999) A major gene for flowering time in chickpea. Crop Sci 39:315–322

    Google Scholar 

  • Pandey G, Sharma N, Sahu PP, Prasad M (2016) Chromatin-based epigenetic regulation of plant abiotic stress response. Curr Genom 17:490–498

    Article  CAS  Google Scholar 

  • Parveen S, Pandey A, Jameel N, Chakraborty S, Chakraborty N (2018) Transcriptional regulation of chickpea ferritin CaFer1 influences its role in iron homeostasis and stress response. J Plant Physiol 222:9–16

    Article  PubMed  CAS  Google Scholar 

  • Parween S, Nawaz K, Roy R, Pole AK, Venkata Suresh B, Misra G, Jain M, Yadav G, Parida SK, Tyagi AK, Bhatia S, Chattopadhyay D (2015) An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.). Sci Rep 5:12806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pavan S, Lotti C, Marcotrigiano AR, Mazzeo R, Bardaro N, Bracuto V, Ricciardi F, Taranto F, D’Agostino N, Schiavulli A, De Giovanni C, Montemurro C, Sonnante G, Ricciardi L (2017) A distinct genetic cluster in cultivated chickpea as revealed by genome-wide marker discovery and genotyping. Plant Genome 10(2) https://doi.org/10.3835/plantgenome

  • Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, Khitrov N, Auer M, Somerville CR (2007) Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci USA 104:15566–15571

    Article  PubMed  PubMed Central  Google Scholar 

  • Pradhan S, Bandhiwal N, Shah N, Kant C, Gaur R, Bhatia S (2014) Global transcriptome analysis of developing chickpea (Cicerarietinum L.) seeds. Front Plant Sci 5:1–14

    Article  Google Scholar 

  • Purayannur S, Kumar K, Kaladhar VC, Verma PK (2017) Phylogenomic analysis of MKKs and MAPKs from 16 legumes and detection of interacting pairs in chickpea divulge MAPK signalling modules. Sci Rep 7:5026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pushpavalli R, Krishnamurthy L, Thudi M, Gaur PM, Rao MV, Siddique KH, Colmer TD, Turner NC, Varshney RK, Vadez V (2015) Two key genomic regions harbour QTLs for salinity tolerance in ICCV 2 × JG 11 derived chickpea (Cicer arietinum L.) recombinant inbred lines. BMC Plant Biol 15:124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rakei A, Maali-Amiri R, Zeinali H, Ranjbar M (2016) DNA methylation and physio-biochemical analysis of chickpea in response to cold stress. Protoplasma 253:61–76

    Article  PubMed  CAS  Google Scholar 

  • Rezaei MK, Deokar A, Tar’an B (2016) Identification and expression analysis of candidate genes involved in carotenoid biosynthesis in chickpea seeds. Front Plant Sci 7:1867

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribaut JM, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58:351–360

    Article  PubMed  CAS  Google Scholar 

  • Ridge S, Deokar A, Lee R, Daba K, Macknight RC, Weller JL, Tar’an B (2017) The chickpea early flowering 1 (Efl1) locus is an ortholog of arabidopsis ELF3. Plant Physiol 175:802–815

    PubMed  PubMed Central  CAS  Google Scholar 

  • Roorkiwal M, Rathore A, Das RR, Singh MK, Jain A, Srinivasan S, Gaur PM, Chellapilla B, Tripathi S, Li Y, Hickey JM, Lorenz A, Sutton T, Crossa J, Jannink JL, Varshney RK (2016) Genome-enabled prediction models for yield related traits in chickpea. Front Plant Sci 7:1666

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabaghpour SH, Mahmodi AA, Kamel SM, Malhotra RS (2006) Study on chickpea drought tolerance lines under dryland condition of Iran. Indian J Crop Sci 1:70–73

    Google Scholar 

  • Sabbavarapu MM, Sharma M, Chamarthi SK, Swapna N, Rathore A, Thudi M, Gaur PM, Suresh Pande S, Singh S, Kaur L, Varshney RK (2013) Molecular mapping of QTLs for resistance to Fusarium wilt (race 1) and Ascochyta blight in chickpea (Cicer arietinum L.). Euphytica 193:121–133

    Article  Google Scholar 

  • Sagi MS, Deokar AA, Tar’an B (2017) Genetic analysis of NBS-LRR gene family in chickpea and their expression profiles in response to ascochyta blight infection. Front Plant Sci 8:838

    Article  PubMed  PubMed Central  Google Scholar 

  • Saxena SC, Salvi P, Kaur H, Verma P, Petla BP, Rao V, Kamble N, Majee M (2013) Differentially expressed myo-inositol monophosphatase gene (CaIMP) in chickpea (Cicer arietinum L.) encodes a lithium-sensitive phosphatase enzyme with broad substrate specificity and improves seed germination and seedling growth under abiotic stresses. J Exp Bot 64:5623–5639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saxena MS, Bajaj D, Das S, Kujur A, Kumar V, Singh M, Bansal KC, Tyagi AK, Parida SK (2014) An integrated genomic approach for rapid delineation of candidate genes regulating agro-morphological traits in chickpea. DNA Res 21:695–710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  PubMed  CAS  Google Scholar 

  • Sharma KD, Nayyar H (2014) Cold stress alters transcription in meiotic anthers of cold tolerant chickpea (Cicer arietinum L.). BMC Res Notes 7:717

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma R, Rawat V, Suresh CG (2014) Genome-wide identification and tissue-specific expression analysis of UDP-glycosyltransferases genes confirm their abundance in Cicer arietinum (Chickpea) genome. PLoS One 9:e109715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma R, Rawat V, Suresh CG (2017) Genome-wide identification and tissue-specific expression analysis of nucleotide binding site-leucine rich repeat gene family in Cicer arietinum (kabuli chickpea). Genom Data 14:24–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh VK, Jain M (2015) Genome-wide survey and comprehensive expression profiling of Aux/IAA gene family in chickpea and soybean. Front Plant Sci 6:918

    PubMed  PubMed Central  Google Scholar 

  • Singh VK, Garg R, Jain M (2013) A global view of transcriptome dynamics during flower development in chickpea by deep sequencing. Plant Biotechnol J 11:691–701

    Article  PubMed  CAS  Google Scholar 

  • Singh VK, Khan AW, Jaganathan D, Thudi M, Roorkiwal M, Takagi H, Garg V, Kumar V, Chitikineni A, Gaur PM, Sutton T, Terauchi R, Varshney RK (2016) QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnol J 14:2110–2119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh U, Khemka N, Rajkumar MS, Garg R, Jain M (2017) PLncPRO for prediction of long non-coding RNAs (lncRNAs) in plants and its application for discovery of abiotic stress-responsive lncRNAs in rice and chickpea. Nucleic Acids Res 45:e183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh A, Nath O, Singh S, Kumar S, Singh IK (2018) Genome-wide identification of the MAPK gene family in chickpea and expression analysis during development and stress response. Plant Gene 13:25–35

    Article  CAS  Google Scholar 

  • Sivasakthi K, Thudi M, Tharanya M, Kale SM, Kholová J, Halime MH, Jaganathan D, Baddam R, Thirunalasundari T, Gaur PM, Varshney RK, Vadez V (2018) Plant vigour QTLs co-map with an earlier reported QTL hotspot for drought tolerance while water saving QTLs map in other regions of the chickpea genome. BMC Plant Biol 18:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Srinivasan S, Gaur PM (2012) Genetics and characterization of an open flower mutant in chickpea. J Hered 103:297–302

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Zheng Y, Kudapa H, Jagadeeswaran G, Hivrale V, Varshney RK, Sunkar R (2015) High throughput sequencing of small RNA component of leaves and inflorescence revealed conserved and novel miRNAs as well asphasiRNA loci in chickpea. Plant Sci 235:46–57

    Article  PubMed  CAS  Google Scholar 

  • Srivastava R, Singh M, Bajaj D, Parida SK (2016a) A high-resolution InDel (insertion–deletion) markers-anchored consensus genetic map identifies major QTLs governing pod number and seed yield in chickpea. Front Plant Sci 7:1362

    PubMed  PubMed Central  Google Scholar 

  • Srivastava R, Bajaj D, Sayal YK, Meher PK, Upadhyaya HD, Kumar R, Tripathi S, Bharadwaj C, Rao AR, Parida SK (2016b) Genome-wide development and deployment of informative intron-spanning and intron-length polymorphism markers for genomics-assisted breeding applications in chickpea. Plant Sci 252:374–387

    Article  PubMed  CAS  Google Scholar 

  • Srivastava R, Bajaj D, Malik A, Singh M, Parida SK (2016c) Transcriptome landscape of perennial wild Cicer microphyllum uncovers functionally relevant molecular tags regulating agronomic traits in chickpea. Sci Rep 6:33616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srivastava R, Upadhyaya HD, Kumar R, Daware A, Basu U, Shimray PW, Tripathi S, Bharadwaj C, Tyagi AK, Parida SK (2017) A Multiple QTL-seq strategy delineates potential genomic loci governing flowering time in chickpea. Front Plant Sci 8:1105

    Article  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  PubMed  CAS  Google Scholar 

  • Tar’an B, Warkentin TD, Tullu A, Vandenberg A (2007) Genetic mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.) using a simple sequence repeat linkage map. Genome 50:26–34

    Article  PubMed  Google Scholar 

  • Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krishnamurthy L, Roorkiwal M, Nayak SN, Chaturvedi SK, Basu PS, Gangarao NV, Fikre A, Kimurto P, Sharma PC, Sheshashayee MS, Tobita S, Kashiwagi J, Ito O, Killian A, Varshney RK (2014a) Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS One 9:e96758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thudi M, Gaur PM, Krishnamurthy L, Mir RR, Kudapa H, Fikre A, Kimurto P, Tripathi S, Soren KR, Mulwa R, Bharadwaj C, Datta S, Chaturvedi SK, Varshney RK (2014b) Genomics-assisted breeding for drought tolerance in chickpea. Funct Plant Biol 41:1178–1190

    Article  CAS  Google Scholar 

  • Thudi M, Khan AW, Kumar V, Gaur PM, Katta K, Garg V, Roorkiwal M, Samineni S, Varshney RK (2016a) Whole genome re-sequencing reveals genome-wide variations among parental lines of 16 mapping populations in chickpea (Cicer arietinum). BMC. Plant Biol 16:10

    Google Scholar 

  • Thudi M, Chitikineni A, Liu X, He W, Roorkiwal M, Yang W, Jian J, Doddamani D, Gaur PM, Rathore A, Samineni S, Saxena RK, Xu D, Singh NP, Chaturvedi SK, Zhang G, Wang J, Datta SK, Xu X, Varshney RK (2016b) Recent breeding programs enhanced genetic diversity in both desi and kabuli varieties of chickpea (Cicer arietinum L.). Sci Rep 6:38636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Upadhyaya HD, Bajaj D, Das S, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CL, Sharma S, Tyagi AK, Parida SK (2015) A genome-scale integrated approach aids in genetic dissection of complex flowering time trait in chickpea. Plant Mol Biol 89:403–420

    Article  PubMed  CAS  Google Scholar 

  • Upadhyaya HD, Bajaj D, Das S, Kumar V, Gowda CL, Sharma S, Tyagi AK, Parida SK (2016a) Genetic dissection of seed-iron and zinc concentrations in chickpea. Sci Rep 6:24050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Upadhyaya HD, Bajaj D, Narnoliya L, Das S, Kumar V, Gowda CLL, Sharma S, Tyagi AK, Parida SK (2016b) Genome-wide scans for delineation of candidate genes regulating seed-protein content in chickpea. Front Plant Sci 7:302

    Article  PubMed  PubMed Central  Google Scholar 

  • Upadhyaya HD, Bajaj D, Srivastava R, Daware A, Basu U, Tripathi S, Bharadwaj C, Tyagi AK, Parida SK (2017) Genetic dissection of plant growth habit in chickpea. Funct Integr Genomics 17:711–723

    Article  PubMed  CAS  Google Scholar 

  • Upasani ML, Gurjar GS, Kadoo NY, Gupta VS (2016) Dynamics of colonization and expression of pathogenicity related genes in Fusarium oxysporum f.sp. ciceri during chickpea vascular wilt disease progression. PLoS One 11:e0156490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Upasani ML, Limaye BM, Gurjar GS, Kasibhatla SM, Joshi RR, Kadoo NY, Gupta VS (2017) Chickpea-Fusarium oxysporum interaction transcriptome reveals differential modulation of plant defense strategies. Sci Rep 7:7746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varma Penmetsa R, Carrasquilla-Garcia N, Bergmann EM, Vance L, Castro B, Kassa MT, Sarma BK, Datta S, Farmer AD, Baek JM, Coyne CJ, Varshney RK, von Wettberg EJ, Cook DR (2016) Multiple post-domestication origins of kabuli chickpea through allelic variation in a diversification-associated transcription factor. New Phytol 211:1440–1451

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Hiremath PJ, Lekha P, Kashiwagi J, Balaji J, Deokar AA, Vadez V, Xiao Y, Srinivasan R, Gaur PM, Siddique KH, Town CD, Hoisington DA (2009) A comprehensive resource of drought- and salinity-responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genom 10:523

    Article  CAS  Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B, Millan T, Zhang X, Ramsay LD, Iwata A, Wang Y, Nelson W, Farmer AD, Gaur PM, Soderlund C, Penmetsa RV, Xu C, Bharti AK, He W, Winter P, Zhao S, Hane JK, Carrasquilla-Garcia N, Condie JA, Upadhyaya HD, Luo MC, Thudi M, Gowda CL, Singh NP, Lichtenzveig J, Gali KK, Rubio J, Nadarajan N, Dolezel J, Bansal KC, Xu X, Edwards D, Zhang G, Kahl G, Gil J, Singh KB, Datta SK, Jackson SA, Wang J, Cook DR (2013a) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Gaur PM, Chamarthi SK, Krishnamurthy L, Tripathi S, Kashiwagi J, Samineni S, Singh VK, Thudi M, Jaganathan D (2013b) Fast-track introgression of ‘QTL-hotspot’ for root traits and other drought tolerance traits in JG 11, an elite and leading variety of chickpea. Plant Genome. https://doi.org/10.3835/plantgenome2013.07.0022

    Article  Google Scholar 

  • Varshney RK, Mir RR, Bhatia S, Thudi M, Hu Y, Azam S, Zhang Y, Jaganathan D, You FM, Gao J, Riera-Lizarazu O, Luo MC (2014a) Integrated physical, genetic and genome map of chickpea (Cicer arietinum L.). Funct Integr Genom 14:59–73

    Article  CAS  Google Scholar 

  • Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J, Krishnamurthy L, Jaganathan D, Koppolu J, Bohra A, Tripathi S, Rathore A, Jukanti AK, Jayalakshmi V, Vemula A, Singh SJ, Yasin M, Sheshshayee MS, Viswanatha KP (2014b) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet 127:445–462

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Mohan SM, Gaur PM, Chamarthi SK, Singh VK, Srinivasan S, Swapna N, Sharma M, Singh S, Kaur L, Pande S (2014c) Marker-assisted backcrossing to introgress resistance to Fusarium wilt race 1 and Ascochyta blight in C214, an elite cultivar of chickpea. Plant Genome 7:1–11

    Article  CAS  Google Scholar 

  • Verma S, Gupta S, Bandhiwal N, Kumar T, Bharadwaj C, Bhatia S (2015a) High-density linkage map construction and mapping of seed trait QTLs in chickpea (Cicer arietinum L.) using genotyping-by-sequencing (GBS). Sci Rep 5:17512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verma M, Kumar V, Patel RK, Garg R, Jain M (2015b) CTDB: an integrated chickpea transcriptome database for functional and applied genomics. PLoS One 10:e0136880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu X, Bai G (2015) Whole-genome resequencing: changing the paradigms of SNP detection, molecular mapping and gene discovery. Mol Breed 35:33

    Article  CAS  Google Scholar 

  • Yan R, Liang C, Meng Z, Malik W, Zhu T, Zong X, Guo S, Zhang R (2016) Progress in genome sequencing will accelerate molecular breeding in cotton (Gossypium spp.). 3 Biotech 6:217

    Article  PubMed  PubMed Central  Google Scholar 

  • Yue JX, Meyers BC, Chen JQ, Tian D, Yang S (2012) Tracing the origin and evolutionary history of plant nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes. New Phytol 193:1049–1063

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y, Fang C, Shen Y, Liu T, Li C, Li Q, Wu M, Wang M, Wu Y, Dong Y, Wan W, Wang X, Ding Z, Gao Y, Xiang H, Zhu B, Lee SH, Wang W, Tian Z (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author UCJ acknowledges support from Indian Council of Agricultural Research (ICAR), New Delhi, India. No fund was recieved for writing this MS.

Author information

Authors and Affiliations

Authors

Contributions

The author UCJ has written the MS.

Corresponding author

Correspondence to Uday Chand Jha.

Additional information

Communicated by Neal Stewart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, U.C. Current advances in chickpea genomics: applications and future perspectives. Plant Cell Rep 37, 947–965 (2018). https://doi.org/10.1007/s00299-018-2305-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-018-2305-6

Keywords

Navigation