Advertisement

Plant Cell Reports

, Volume 37, Issue 6, pp 887–900 | Cite as

Functional analysis of MeCIPK23 and MeCBL1/9 in cassava defense response against Xanthomonas axonopodis pv. manihotis

  • Yu Yan
  • Xinyi He
  • Wei Hu
  • Guoyin Liu
  • Peng Wang
  • Chaozu He
  • Haitao Shi
Original Article

Abstract

Key message

MeCIPK23 interacts with MeCBL1/9, and they confer improved defense response, providing potential genes for further genetic breeding in cassava.

Abstract

Cassava (Manihot esculenta) is an important food crop in tropical area, but its production is largely affected by cassava bacterial blight. However, the information of defense-related genes in cassava is very limited. Calcium ions play essential roles in plant development and stress signaling pathways. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) are crucial components of calcium signals. In this study, systematic expression profile of 25MeCIPKs in response to Xanthomonas axonopodis pv. manihotis (Xam) infection was examined, by which seven candidate MeCIPKs were chosen for functional investigation. Through transient expression in Nicotiana benthamiana leaves, we found that six MeCIPKs (MeCIPK5, MeCIPK8, MeCIPK12, MeCIPK22, MeCIPK23 and MeCIPK24) conferred improved defense response, via regulating the transcripts of several defense-related genes. Notably, we found that MeCIPK23 interacted with MeCBL1 and MeCBL9, and overexpression of these genes conferred improved defense response. On the contrary, virus-induced gene silencing of either MeCIPK23 or MeCBL1/9 or both genes resulted in disease sensitive in cassava. To our knowledge, this is the first study identifying MeCIPK23 as well as MeCBL1 and MeCBL9 that confer enhanced defense response against Xam.

Keywords

Calcium CBL-interacting protein kinase (CIPK) Cassava (Manihot esculentaCassava bacterial blight Xanthomonas axonopodis pv. manihotis (Xam

Abbreviations

ABA

Abscisic acid

BiFC

Biomolecular fluorescence complementation

CaM

Calmodulin

CBL

Calcineurin B-like protein

CIPK

CBL-interacting protein kinase

CML

Calmodulin-like protein

CPK

Calcium-dependent protein kinase

DAPI

4′,6-Diamidino-2-phenylindole

dpi

Day post infiltration

EL

Electrolyte leakage

GFP

Green fluorescent protein

H+

Hydrogen ion

H2O2

Hydrogen peroxide

MAMPs/PAMPs

Microbe/pathogen-associated molecular patterns

NOX

NADPH oxidase

NPR1

Nonexpresser of PR genes 1

O2·−

Superoxide radical

PM

Plasma membrane

PP2C

2C-type protein phosphatase

PPI

Protein–phosphatase interaction

PR

Pathogensis-related gene

Rboh

Respiratory burst oxidase homologues

ROS

Reactive oxygen species

VIGS

Virus-induced gene silencing

Xam

Xanthomonas axonopodis pv. manihotis

Notes

Acknowledgements

We thank Dr. Chris R. Somerville, Dr. Jie Zhou, Dr. Yanru Hu, and Dr. Jiang Tian for sharing their vector plasmids. This research was supported by the National Natural Science Foundation of China (No. 31760067), the startup funding and the scientific research foundation of Hainan University (No. kyqd1531) to Haitao Shi.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

299_2018_2276_MOESM1_ESM.doc (376 kb)
Supplementary material 1 (DOC 376 KB)

References

  1. Albrecht V, Ritz O, Linder S, Harter K, Kudla J (2001) The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. EMBO J 20:1051–1063CrossRefPubMedPubMedCentralGoogle Scholar
  2. Batistic O, Rehers M, Akerman A et al (2012) S-acylation-dependent association of the calcium sensor CBL2 with the vacuolar membrane is essential for proper abscisic acid responses. Cell Res 22:1155–1168CrossRefPubMedPubMedCentralGoogle Scholar
  3. Camilo L, Soto M, Restrepo S (2005) Gene expression profile in response to Xanthomonas axonopodis pv. manihotis infection in cassava using a cDNA microarray. Plant Mol Biol 57:393–410CrossRefGoogle Scholar
  4. Chaves-Sanjuan A, Sanchez-Barrena MJ, Gonzalez-Rubio JM et al (2014) Structural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress. Proc Natl Acad Sci USA 111:4532–4541CrossRefGoogle Scholar
  5. Chen X, Gu Z, Xin D et al (2011) Identification and characterization of putative CIPK genes in maize. J Genet Genom 38:77–87CrossRefGoogle Scholar
  6. Chen L, Ren F, Zhou L, Wang QQ, Zhong H, Li XB (2012) The Brassica napus Calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signaling. J Exp Bot 63:6211–6222CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR (2000) Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci USA 97:3718–3723CrossRefPubMedPubMedCentralGoogle Scholar
  8. de la Torre F, Gutiérrez-Beltrán E, Pareja-Jaime Y, Chakravarthy S, Marti GB, del Pozo O (2013) The tomato calcium sensor Cbl10 and its interacting protein kinase Cipk6 define a signaling pathway in plant immunity. Plant Cell 25:2748–2764CrossRefPubMedPubMedCentralGoogle Scholar
  9. Drerup MM, Schlucking K, Hashimoto K et al (2013) The calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF. Mol Plant 6:559–569CrossRefPubMedGoogle Scholar
  10. Eckert C, Offenborn JN, Heinz T et al (2014) The vacuolar calcium sensors CBL2 and CBL3 affect seed size and embryonic development in Arabidopsis thaliana. Plant J 78:146–156CrossRefPubMedGoogle Scholar
  11. Evans NH, McAinsh MR, Hetherington AM (2001) Calcium oscillations in higher plants. Curr Opin Plant Biol 4:415–420CrossRefPubMedGoogle Scholar
  12. Hauck P, Thilmony R, He SY (2003) A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defence in susceptible Arabidopsis plants. Proc Natl Acad Sci USA 100:8577–8582CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hu HC, Wang YY, Tsay YF (2009) AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. Plant J 57:264–278CrossRefPubMedGoogle Scholar
  14. Hu Y, Jiang L, Wang F, Yu D (2013) Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25:2907–2924CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hu W, Wei Y, Xia Z et al (2015a) Genome-wide identification and expression analysis of the NAC transcription factor family in cassava. PLoS ONE 10:e0136993CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hu W, Xia Z, Yan Y et al (2015b) Genome-wide gene phylogeny of CIPK family in cassava and expression analysis of partial drought-induced genes. Front Plant Sci 6:187Google Scholar
  17. Hu DG, Ma QJ, Sun CH, Sun MH, You CX, Hao YJ (2016) Overexpression of MdSOS2L1, a CIPK protein kinase, increases the antioxidant metabolites to enhance salt tolerance in apple and tomato. Physiol Plant 156:201–214CrossRefGoogle Scholar
  18. Kim KN, Cheong YH, Grant JJ, Pandey GK, Luan S (2003) CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15:411–423CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kleist TJ, Luan S (2016) Constant change: dynamic regulation of membrane transport by calcium signalling networks keeps plants in tune with their environment. Plant Cell Environ 39:467–481CrossRefPubMedGoogle Scholar
  20. Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J (2004) Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol 134:43–58CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kurusu T, Hamada J, Hamada H, Hanamata S, Kuchitsu K (2010) Roles of calcineurin B-like protein-interacting protein kinases in innate immunity in rice. Plant Signal Behav 5:1045–1047CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lan WZ, Lee SC, Che YF, Jiang YQ, Luan S (2011) Mechanistic analysis of AKT1 regulation by the CBL-CIPK-PP2CA interactions. Mol Plant 4:527–536CrossRefPubMedGoogle Scholar
  24. Li L, Kim BG, Cheong YH, Pandey GK, Luan S (2006) A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proc Natl Acad Sci USA 103:12625–12630CrossRefPubMedPubMedCentralGoogle Scholar
  25. Li ZY, Xu ZS, He GY et al (2012) Overexpression of soybean GmCBL1 enhances abiotic stress tolerance and promotes hypocotyl elongation in Arabidopsis. Biochem Biophys Res Commun 427:731–736CrossRefPubMedGoogle Scholar
  26. Liu J, Zhu JK (1998) A calcium sensor homolog required for plant salt tolerance. Science 280:1943–1945CrossRefPubMedGoogle Scholar
  27. Liu Y, Schiff M, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J 31:777–786CrossRefPubMedGoogle Scholar
  28. Liu J, Liu L, Li Y et al (2015) Role for the banana AGAMOUS-like gene MaMADS7 in regulation of fruit ripening and quality. Physiol Plant 155:217–231CrossRefPubMedGoogle Scholar
  29. Luan S, Lan W, Chul-Lee S (2009) Potassium nutrition, sodium toxicity, and calcium signaling: connections through the CBL-CIPK network. Curr Opin Plant Biol 12:339–346CrossRefPubMedGoogle Scholar
  30. Lyzenga WJ, Liu H, Schofield A, Muise-Hennessey A, Stone SL (2013) Arabidopsis CIPK26 interacts with KEG, components of the ABA signalling network and is degraded by the ubiquitin-proteasome system. J Exp Bot 64:2779–2791CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mähs A, Steinhorst L, Han JP, Shen LK, Wang Y, Kudla J (2013) The calcineurin B-like Ca2 + sensors CBL1 and CBL9 function in pollen germination and pollen tube growth in Arabidopsis. Mol Plant 6:1149–1162CrossRefPubMedGoogle Scholar
  32. Manik SM, Shi S, Mao J et al (2015) The calcium sensor CBL-CIPK is involved in plant's response to abiotic stresses. Int J Genomics 2015:493191CrossRefPubMedPubMedCentralGoogle Scholar
  33. Meena MK, Ghawana S, Dwivedi V, Roy A, Chattopadhyay D (2015) Expression of chickpea CIPK25 enhances root growth and tolerance to dehydration and salt stress in transgenic tobacco. Front Plant Sci 6:683CrossRefPubMedPubMedCentralGoogle Scholar
  34. Muñoz-Bodnar A, Perez-Quintero AL, Gomez-Cano F et al (2014) RNAseq analysis of cassava reveals similar plant responses upon infection with pathogenic and non-pathogenic strains of Xanthomonas axonopodis pv. manihotis. Plant Cell Rep 33:1901 – 1112CrossRefPubMedGoogle Scholar
  35. Pandey GK, Kanwar P, Singh A et al (2015) CBL-interacting protein kinase, CIPK21, regulates osmotic and salt stress responses in Arabidopsis. Plant Physiol 169:780–792CrossRefPubMedPubMedCentralGoogle Scholar
  36. Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99:8436–8441CrossRefPubMedPubMedCentralGoogle Scholar
  37. Quan R, Lin H, Mendoza I et al (2007) SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 19:1415–1431CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sanchez-Barrena MJ, Fujii H, Angulo I, Martinez-Ripoll M, Zhu JK, Albert A (2007) The structure of the C-terminal domain of the protein kinase AtSOS2 bound to the calcium sensor AtSOS3. Mol Cell 26:427–435CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sanyal SK, Pandey A, Pandey GK (2016) The CBL-CIPK signaling module in plants: a mechanistic perspective. Physiol Plant 155:89–108CrossRefGoogle Scholar
  40. Sardar A, Nandi AK, Chattopadhyay D (2017) CBL-interacting protein kinase 6 negatively regulates immune response to Pseudomonas syringae in Arabidopsis. J Exp Bot 13:3573–3584 CrossRefGoogle Scholar
  41. Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97:6896–6901CrossRefPubMedPubMedCentralGoogle Scholar
  42. Shi H, Wang X, Ye T et al (2014) The cysteine2/histidine2-type transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA 6 modulates biotic and abiotic stress responses by activating salicylic acid-related genes and C-REPEAT-BINDING FACTOR genes in Arabidopsis. Plant Physiol 165:1367–1379CrossRefPubMedPubMedCentralGoogle Scholar
  43. Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025CrossRefPubMedGoogle Scholar
  44. Steinhorst L, Mähs A, Ischebeck T et al (2015) Vacuolar CBL-CIPK12 Ca2+-sensor-kinase complexes are required for polarized pollen tube growth. Curr Biol 25:1475–1482CrossRefPubMedGoogle Scholar
  45. Sun T, Wang Y, Wang M et al (2015) Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L.). BMC Plant Biol 15:1–17CrossRefGoogle Scholar
  46. Tang RJ, Liu H, Yang Y et al (2012) Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis. Cell Res 22:1650–1665CrossRefPubMedPubMedCentralGoogle Scholar
  47. Tang RJ, Zhao F, Garcia VJ et al (2015) Tonoplast CBL–CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis. Proc Natl Acad Sci USA 112:3134–3139CrossRefPubMedPubMedCentralGoogle Scholar
  48. Thapa G, Dey M, Sahoo L, Panda SK (2011) An insight into the drought stress induced alterations in plants. Biol Plant 5:603–613CrossRefGoogle Scholar
  49. Tian Q, Zhang X, Yang A, Wang T, Zhang WH (2016) CIPK23 is involved in iron acquisition of Arabidopsis by affecting ferric chelate reductase activity. Plant Sci 246:70–79CrossRefPubMedGoogle Scholar
  50. Tsou PL, Lee SY, Allen NS, Winter-Sederoff H, Robertson D (2012) An ER-targeted calcium-binding peptide confers salt and drought tolerance mediated by CIPK6 in Arabidopsis. Planta 235:539–552CrossRefPubMedGoogle Scholar
  51. Wang RK, Li LL, Cao ZH et al (2012) Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Mol Biol 79:123–135CrossRefPubMedGoogle Scholar
  52. Wang XP, Chen LM, Liu WX et al (2016) AtKC1 and CIPK23 synergistically modulate AKT1-mediated low potassium stress responses in Arabidopsis. Plant Physiol 170:2264–2277CrossRefPubMedPubMedCentralGoogle Scholar
  53. Weinl S, Kudla J (2009) The CBL-CIPK Ca2+-decoding signaling network: function and perspectives. New Phytol 184:517–528CrossRefPubMedGoogle Scholar
  54. Xiang Y, Huang Y, Xiong L (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144:1416–1428CrossRefPubMedPubMedCentralGoogle Scholar
  55. Xu J, Li HD, Chen LQ et al (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125:1347–1360CrossRefPubMedGoogle Scholar
  56. Yan J, Niu F, Liu WZ et al (2014) Arabidopsis CIPK14 positively regulates glucose response. Biochem Biophys Res Commun 450:1679–1683CrossRefPubMedGoogle Scholar
  57. Yang W, Kong Z, Omo-Ikerodah E, Xu W, Li Q, Xue Y (2008) Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.). J Genet Genom 35:531–543CrossRefGoogle Scholar
  58. Yu Y, Xia X, Yin W, Zhang H (2007) Comparative genomic analysis of CIPK gene family in Arabidopsis and Populus. Plant Growth Regul 52:101–110CrossRefGoogle Scholar
  59. Yu Q, An L, Li W (2014) The CBL-CIPK network mediates different signaling pathways inplants. Plant Cell Rep 33:203–214CrossRefPubMedGoogle Scholar
  60. Zhang H, Yang B, Liu WZ, Li H, Wang L, Wang B et al (2014) Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.). BMC Plant Biol 14:1–24CrossRefGoogle Scholar
  61. Zhou J, Wang J, Bi Y et al (2014) Overexpression of PtSOS2 enhances salt tolerance in transgenic poplars. Plant Mol Biol 32:185–197CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yu Yan
    • 1
  • Xinyi He
    • 1
  • Wei Hu
    • 2
  • Guoyin Liu
    • 1
  • Peng Wang
    • 1
  • Chaozu He
    • 1
  • Haitao Shi
    • 1
  1. 1.Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and ForestryHainan UniversityHaikouChina
  2. 2.Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina

Personalised recommendations