Evaluation of the plant growth-promoting activity of Pseudomonas nitroreducens in Arabidopsis thaliana and Lactuca sativa

  • Cao Son Trinh
  • Hyeri Lee
  • Won Je Lee
  • Seok Jin Lee
  • Namhyun Chung
  • Juhyeong Han
  • Jongyun Kim
  • Suk-Whan Hong
  • Hojoung Lee
Original Article


Key message

Pseudomonas nitroreducens: strain IHB B 13561 (PnIHB) enhances the growth of Arabidopsis thaliana and Lactuca sativa via the stimulation of cell development and nitrate absorption.


Plant growth-promoting rhizobacteria (PGPR) enhance plant development through various mechanisms; they improve the uptake of soil resources by plants to greatly promote plant growth. Here, we used Arabidopsis thaliana seedlings and Lactuca sativa to screen the growth enhancement activities of a purified PGPR, Pseudomonas nitroreducens strain IHB B 13561 (PnIHB). When cocultivated with PnIHB, both species of plants exhibited notably improved growth, particularly in regard to biomass. Quantitative reverse transcription polymerase chain reaction analysis indicated high expression levels of the nitrate transporter genes, especially NRT2.1, which plays a major role in the high-affinity nitrate transport system in roots. Moreover, enhanced activity of the cyclin-B1 promoter was observed when wild-type ‘Columbia-0’ Arabidopsis seedlings were exposed to PnIHB, whereas upregulation of cyclin-B also occurred in the inoculated lettuce seedlings. Overall, these results suggest that PnIHB improves A. thaliana and L. sativa growth via specific pathways involved in the promotion of cell development and enhancement of nitrate uptake.


Arabidopsis thaliana CycB1 Lactuca sativa PGPR PnIHB NRT2 



Financial support for this work was provided through a grant from the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (to H.L., 2016; Grant #2016-116118-3).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

299_2018_2275_MOESM1_ESM.pdf (638 kb)
Supplementary material 1 (PDF 638 KB)


  1. Berenguer P, Santiveri F, Boixadera J, Lloveras J (2009) Nitrogen fertilisation of irrigated maize under Mediterranean conditions. Eur J Agron 30:163–171CrossRefGoogle Scholar
  2. Béziat C, Kleine-Vehn J, Feraru E (2017) Histochemical staining of β-glucuronidase and its spatial quantification. Methods Mol Biol 1497:73–80CrossRefPubMedGoogle Scholar
  3. Calvo P, Nelson LM, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41CrossRefGoogle Scholar
  4. Cataldo DA, Haroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant-tissue by nitration a salicylic-acid. Commun Soil Sci Plant 6:71–80CrossRefGoogle Scholar
  5. Cerezo M, Tillard P, Filleur S, Munos S, Daniel-Vedele F, Gojon A (2001) Major alterations of the regulation of root NO3 uptake are associated with the mutation of NRT2.1 and NRT2.2 genes in Arabidopsis. Plant Physiol 127:262–271CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chen H, Guo G, Tseng D, Cheng C, Huang S (2006) Growth factors, kinetics and biodegradation mechanism associated with Pseudomonas nitroreducens TX1 grown on octylphenol polyethoxylates. J Environ Manag 80:279–286CrossRefGoogle Scholar
  7. Crawford NM (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 7:859–868CrossRefPubMedPubMedCentralGoogle Scholar
  8. Eloy NB, Freitas LM, Van Damme D, Vanhaeren H, Gonzalez N, De Milde L, Hemerly AS, Beemster GT, Inzé D, Ferreira PC (2011) The APC/C subunit 10 plays an essential role in cell proliferation during leaf development. Plant J 68:351–363CrossRefPubMedGoogle Scholar
  9. Fang XZ, Tian WH, Liu XX, Lin XY, Jin CW, Zheng SJ (2016) Alleviation of proton toxicity by nitrate uptake specifically depends on nitrate transporter 1.1 in Arabidopsis. New Phytol 211:149–158CrossRefPubMedGoogle Scholar
  10. Filleur S, Dorbe MF, Cerezo M, Orsel M, Granier F, Gojon A, Daniel-Vedele F (2001) An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Lett 489:220–224CrossRefPubMedGoogle Scholar
  11. García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2:183–205CrossRefGoogle Scholar
  12. Hirel B, Tetu T, Lea PJ, Dubois F (2011) Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3:1452–1485CrossRefGoogle Scholar
  13. Howitt SM, Udvardi MK (2000) Structure, function and regulation of ammonium transporters in plants. Biochim Biophys Acta 1465:152–170CrossRefPubMedGoogle Scholar
  14. Knobeloch L, Salna B, Hogan B, Postle J, Anderson H (2000) Blue babies and nitrate-contaminated well water. Environ Health Perspect 108:675–678CrossRefPubMedPubMedCentralGoogle Scholar
  15. Krapp A, David LC, Chardin C, Girin T, Marmagne A, Leprince A-S, Chaillou S, Ferrario-Méry S, Meyer C, Daniel-Vedele F (2014) Nitrate transport and signaling in Arabidopsis. J Exp Bot 65:789–798CrossRefPubMedGoogle Scholar
  16. Lee CK, Jang MY, Park HR, Choo GC, Cho HS, Park SB, Oh KC, An JB, Kim BG (2016) Cloning and characterization of xylanase in cellulolytic Bacillus sp. strain JMY1 isolated from forest soil. Appl Biol Chem 59:415–423CrossRefGoogle Scholar
  17. Mantelin S, Debrosses G, Larcher M, Tranbarger TJ, Cleyet-Marel JC, Touraine B (2006) Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp. Planta 223:591–603CrossRefPubMedGoogle Scholar
  18. Manzano AI, Larkin OJ, Dijkstra CE, Anthony P, Davey MR, Eaves L, Hill RJ, Herranz R, Medina FJ (2013) Meristematic cell proliferation and ribosome biogenesis are decoupled in diamagnetically levitated Arabidopsis seedlings. BMC Plant Biol 13:1–15CrossRefGoogle Scholar
  19. Moon MK, Kang KS, Park IK, Kim TK, Kim HS (2015) Effects of leaf nitrogen allocation on the photosynthetic nitrogen-use efficiency of seedlings of three tropical species in Indonesia. J Korean Soc Appl Biol Chem 58:511–519CrossRefGoogle Scholar
  20. Nguyen HD, Jeong CY, Lee WJ, Lee H (2016a) Identification of a novel Arabidopsis mutant showing sensitivity to histone deacetylase inhibitors. Appl Biol Chem 59:855–860CrossRefGoogle Scholar
  21. Nguyen T, Yeh C, Tsai P, Lee K, Huang S (2016b) Transposon mutagenesis identifies genes critical for growth of Pseudomonas nitroreducens TX1 on octylphenol polyethoxylates. Appl Environ Microbiol 82:6584–6592CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ni Z, Kim ED, Ha M, Lackey E, Liu J, Zhang Y, Sun Q, Chen ZJ (2009) Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457:327–331CrossRefPubMedGoogle Scholar
  23. O’Brien JA, Vega A, Bouguyon E, Krouk G, Gojon A, Coruzzi G, Gutierrez RA (2016) Nitrate transport, sensing, and response in plants. Mol Plant 9:837–856CrossRefPubMedGoogle Scholar
  24. Oh JE, Kim YH, Kim JH, Kwon Y, Lee H (2011a) Enhanced level of anthocyanin leads to increased salt tolerance in Arabidopsis PAP1-D plants upon sucrose treatment. J Korean Soc Appl Biol Chem 54:79–88CrossRefGoogle Scholar
  25. Oh JE, Kwon Y, Kim JH, Noh H, Hong SW, Lee H (2011b) A dual role for MYB60 in stomatal regulation and root growth of Arabidopsis thaliana under drought stress. Plant Mol Biol 77:91–103CrossRefPubMedGoogle Scholar
  26. Onwosi C, Odibo F (2012) Effects of carbon and nitrogen sources on rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from soil. World J Microbiol Biotechnol 28:937–942CrossRefPubMedGoogle Scholar
  27. Poitout A, Martinière A, Kucharczyk B, Queruel N, Silva-Andia J, Mashkoor S, Gamet L, Varoquax F, Paris N, Sentenac H, Touraine B, Desbrosses G (2017) Local signalling pathways regulate the Arabidopsis root developmental response to Mesorhizobium loti inoculation. J Exp Bot 68:1199–1211CrossRefPubMedGoogle Scholar
  28. Pozhvano GA, Medvedev SS (2008) Auxin quantification based on histochemical staining of GUS under the control of auxin-responsive promoter. Russ J Plant Physiol 55:706–711CrossRefGoogle Scholar
  29. Pratelli R, Pilot G (2014) Regulation of amino acid metabolic enzymes and transporters in plants. J Exp Bot 65:5535–5556CrossRefPubMedGoogle Scholar
  30. Ramos-Solano B, Alga A, García-Villaraco A, García-Cristóbal J, Lucas G, Gutierrez-Manero F (2010) Biotic elicitation of isoflavone metabolism with plant growth promoting rhizobacteria in early stages of development in Glycine max var. Osumi. J Agric Food Chem 58:1484–1492CrossRefPubMedGoogle Scholar
  31. Razgallah N, Abid G, Chikh-Rouhou H, Hassen A, M’hamidi M (2017) Nitrate content and expression of putative nitrate transporter genes in lettuce fertilized with nitrogen fertilizers. Int J Veg Sci 23:173–184CrossRefGoogle Scholar
  32. Rupa I, Brien I, Ashish D (2017) Genome of Pseudomonas nitroreducens DF05 from dioxin contaminated sediment downstream of the San Jacinto River waste pits reveals a broad array of aromatic degradation gene determinants. Genom Data 14:40–43CrossRefGoogle Scholar
  33. Saiz-Fernándeza I, De Diego N, Sampedro MC, Mena-Petited A, Ortiz-Barredoe A, Lacuestaa M (2015) High nitrate supply reduces growth in maize, from cell to whole plant. J Plant Physiol 173:120–129CrossRefGoogle Scholar
  34. Sander ER (2012) Aseptic laboratory techniques: plating methods. J Vis Exp 63:3064Google Scholar
  35. Shir-Ly H, Hsin C, Anyi H, Nguyen T, Chang-Ping Y (2014) Draft genome sequence of Pseudomonas nitroreducens strain TX1, which degrades nonionic surfactants and estrogen-like alkylphenols. Genome Announc 2:1262–1263Google Scholar
  36. Siddikee MA, Sundaram S, Chandrasekaran M, Kim K, Selvakumar G, Sa T (2015) Halotolerant bacteria with ACC deaminase activity alleviate salt stress effect in canola seed germination. J Korean Soc Appl Biol Chem 58:237–241CrossRefGoogle Scholar
  37. Souza R, Ambrosini A, Passaquilia L (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419CrossRefPubMedPubMedCentralGoogle Scholar
  38. Tischner R (2000) Nitrate uptake and reduction in higher and lower plants. Plant Cell Environ 23:1005–1024CrossRefGoogle Scholar
  39. Vejan P, Abdullah R, Khadiran T, Ismail S, Boyce AN (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21:573CrossRefGoogle Scholar
  40. Vendrell PF, Zupancic J (1990) Determination of soil nitrate by transnitration of salicylic acid. Commun Soil Sci Plant Anal 21:1705–1713CrossRefGoogle Scholar
  41. Weselowski B, Nathoo N, Eastman AW, MacDonald J, Yuan ZC (2016) Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. BMC Microbiol 16:244CrossRefPubMedPubMedCentralGoogle Scholar
  42. Wintermans PCA, Bakker PAHM, Pieterse CMJ (2016) Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. Plant Mol Biol 90:623–634CrossRefPubMedPubMedCentralGoogle Scholar
  43. Xu N, Wang R, Zhao L, Zhang C, Li Z, Lei Z, Liu F, Guan P, Chu Z, Crawford NM, Wanga Y (2016) The Arabidopsis NRG2 protein mediates nitrate signaling and interacts with and regulates key nitrate regulators. Plant Cell 28:485–504CrossRefPubMedPubMedCentralGoogle Scholar
  44. Yao J, Zhang G, Wu Q, Cheng G, Zhang R (1999) Production of polyhydroxyalkanoates by Pseudomonas nitroreducens. Antonie Leeuwenhoek 75:345–349CrossRefPubMedGoogle Scholar
  45. Yuan J, Ruan Y, Wang B, Zhang J, Wassem R, Huang Q, Shen Q (2013) Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed fusarium wilt and promoted the growth of banana plants. J Agric Food Chem 61:3774–3780CrossRefPubMedGoogle Scholar
  46. Zhang H, Forde BG (2000) Regulation of Arabidopsis root development by nitrate availability. J Exp Bot 51:51–59CrossRefPubMedGoogle Scholar
  47. Zhang Z, Pan L, Li H (2010) Isolation, identification and characterization of soil microbes which degrade phenolic allelochemicals. J Appl Microbiol 108:1839–1849CrossRefPubMedGoogle Scholar
  48. Zhou C, Gou J, Zhu L, Xiao X, Xie Y, Zhu J, Ma Z, Wang J (2016) Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated acquisition mechanisms. Plant Physiol Biol Chem 105:162–173CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Cao Son Trinh
    • 1
  • Hyeri Lee
    • 1
  • Won Je Lee
    • 1
  • Seok Jin Lee
    • 1
  • Namhyun Chung
    • 1
  • Juhyeong Han
    • 2
  • Jongyun Kim
    • 1
  • Suk-Whan Hong
    • 3
  • Hojoung Lee
    • 1
  1. 1.Department of Biosystems and Biotechnology, College of Life Sciences and BiotechnologyKorea UniversitySeoulRepublic of Korea
  2. 2.Odus R&D CenterEumseong-GunRepublic of Korea
  3. 3.Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Bioenergy Research CenterChonnam National UniversityGwangjuRepublic of Korea

Personalised recommendations