Plant Cell Reports

, Volume 37, Issue 5, pp 799–808 | Cite as

Distinct transgenic effects of poplar TDIF genes on vascular development in Arabidopsis

  • Xin Li
  • Heyu Yang
  • Caili Wang
  • Shaohui Yang
  • Jiehua Wang
Original Article

Abstract

Key message

Poplar CLE genes encoding TDIF motifs differentially regulate vascular cambial cell division and woody tissue organization in transgenic Arabidopsis.

Abstract

In Arabidopsis, CLE41 and CLE44 genes encode the tracheary element differentiation inhibitory factor (TDIF) peptide, which functions as a non-cell autonomous signal to regulate vascular development, and overexpression of AtCLE41/CLE44 generate similar phenotypic defects. In poplar, there are six CLE genes (PtTDIF1-4 and PtTDIF-like1-2) encoding two TDIF peptides (TDIF and TDIF-like peptide), which exhibit nearly same activities when exogenously applied to Arabidopsis seedlings. In this work, for each TDIF peptide, we chose two poplar CLE genes (PtTDIF2 and 3 for TDIF, and PtTDIF-like1-2 for TDIF-like peptide) to compare their in vivo effects in transgenic Arabidopsis. Our results showed that transgenic Arabidopsis lines overexpressing each individual PtTDIF gene exhibited dramatically distinct phenotypes associated with vascular development, demonstrating that TDIF motif is not the only functional determinant after genetic transformation. Moreover, we revealed that overexpressed poplar TDIFs enhanced the proliferation of (pro)cambial cells only in hypocotyls, but not in inflorescence stems by differentially regulating the transcriptional levels of WOX4 and WOX14 in these two tissues.

Keywords

TDIF CLE motif Poplar Transgenic Arabidopsis Vascular development 

Notes

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to disclose.

Supplementary material

299_2018_2268_MOESM1_ESM.doc (2.7 mb)
Supplementary material 1 (DOC 2733 KB)

References

  1. Baima S, Nobili F, Sessa G, Lucchetti S, Ruberti I, Morelli G (1995) The expression of the Athb-8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana. Development 121:4171–4182PubMedGoogle Scholar
  2. Baima S, Possenti M, Matteucci A, Wisman E, Altamura MM, Ruberti I, Morelli G (2001) The Arabidopsis ATHB-8 HD-zip protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant Physiol 126:643–655CrossRefPubMedPubMedCentralGoogle Scholar
  3. Carland FM, Berg BL, FitzGerald JN, Jinamornphongs S, Nelson T, Keith B (1999) Genetic regulation of vascular tissue patterning in Arabidopsis. Plant Cell 11:2123–2137CrossRefPubMedPubMedCentralGoogle Scholar
  4. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefPubMedGoogle Scholar
  5. Cock JM, McCormick S (2001) A large family of genes that share homology with CLAVATA3. Plant Physiol 126:939–942CrossRefPubMedPubMedCentralGoogle Scholar
  6. Djordjevic MA, Oakes M, Wong CE, Singh M, Bhalla P, Kusumawati L, Imin N (2011) Border sequences of Medicago truncatula CLE36 are specifically cleaved by endoproteases common to the extracellular fluids of Medicago and soybean. J Exp Bot 62:4649–4659CrossRefPubMedPubMedCentralGoogle Scholar
  7. Etchells JP, Turner SR (2010a) Orientation of vascular cell divisions in Arabidopsis. Plant Signal Behav 5:730–732CrossRefPubMedPubMedCentralGoogle Scholar
  8. Etchells JP, Turner SR (2010b) The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137:767–774CrossRefPubMedGoogle Scholar
  9. Etchells JP, Provost CM, Mishra L, Turner SR (2013) WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation. Development 140:2224–2234CrossRefPubMedPubMedCentralGoogle Scholar
  10. Etchells JP, Mishra LS, Kumar M, Campbell L, Turner SR (2015) Wood formation in trees is increased by manipulating PXY-regulated cell division. Curr Biol 25:1050–1055CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fiers M, Golemiec E, van der Schors R, van der Geest L, Li KW, Stiekema WJ, Liu CM (2006) The CLAVATA3/ESR motif of CLAVATA3 is functionally independent from the nonconserved flanking sequences. Plant Physiol 141:1284–1292CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fiers M, Ku KL, Liu CM (2007) CLE peptide ligands and their roles in establishing meristems. Curr Opin Plant Biol 10:39–43CrossRefPubMedGoogle Scholar
  13. Fukuda H (2004) Signals that control plant vascular cell differentiation. Nat Rev Mol Cell Biol 5:379–391CrossRefPubMedGoogle Scholar
  14. Fukuda H, Komamine A (1980) Establishment of an experimental system for the study of tracheary element differentiation from single cells isolated from the mesophyll of Zinnia elegans. Plant Physiol 65:57–60CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fukuda H, Hirakawa Y, Sawa S (2007) Peptide signaling in vascular development. Curr Opin Plant Biol 10:477–482CrossRefPubMedGoogle Scholar
  16. Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fukuda H (2008) Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci USA 105:15208–15213CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hirakawa Y, Kondo Y, Fukuda H (2010a) Regulation of vascular development by CLE peptide-receptor systems. J Integr Plant Biol 52:8–16CrossRefPubMedGoogle Scholar
  18. Hirakawa Y, Kondo Y, Fukuda H (2010b) TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell 22:2618–2629CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ilegems M, Douet V, Meylan-Bettex M, Uyttewaal M, Brand L, Bowman JL, Stieger PA (2010) Interplay of auxin, KANADI and Class III HD-ZIP transcription factors in vascular tissue formation. Development 137:975–984CrossRefPubMedGoogle Scholar
  20. Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006) Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313:842–845CrossRefPubMedGoogle Scholar
  21. Jun JH, Fiume E, Fletcher JC (2008) The CLE family of plant polypeptide signaling molecules. Cell Mol Life Sci 65:743–755CrossRefPubMedGoogle Scholar
  22. Kondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T, Fukuda H, Sakagami Y (2006) A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science 313:845–848CrossRefPubMedGoogle Scholar
  23. Kondo Y, Ito T, Nakagami H, Hirakawa Y, Saito M, Tamaki T, Shirasu K, Fukuda H (2014) Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signaling. Nat Commun 5:3504PubMedGoogle Scholar
  24. Liu Y, Yang S, Song Y, Men S, Wang J (2016) Gain-of-function analysis of poplar CLE genes in Arabidopsis by exogenous application and over-expression assays. J Exp Bot 67:2309–2324CrossRefPubMedGoogle Scholar
  25. Meng L, Ruth KC, Fletcher JC, Feldman L (2010) The roles of different CLE domains in Arabidopsis CLE polypeptide activity and functional specificity. Mol Plant 3:760–772CrossRefPubMedGoogle Scholar
  26. Morita J, Kato K, Nakane T, Kondo Y, Fukuda H, Nishimasu H, Ishitani R, Nureki O (2016) Crystal structure of the plant receptor-like kinase TDR in complex with the TDIF peptide. Nat Commun 7:12383CrossRefPubMedPubMedCentralGoogle Scholar
  27. Ni J, Guo Y, Jin H, Hartsell J, Clark SE (2011) Characterization of a CLE processing activity. Plant Mol Biol 75:67–75CrossRefPubMedGoogle Scholar
  28. Olsen AN, Skriver K (2003) Ligand mimicry? Plant-parasitic nematode polypeptide with similarity to CLAVATA3. Trends Plant Sci 8:55–57CrossRefPubMedGoogle Scholar
  29. Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE (2005) Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17:61–76CrossRefPubMedPubMedCentralGoogle Scholar
  30. Scarpella E, Francis P, Berleth T (2004) Stage-specific markers define early steps of procambium development in Arabidopsis leaves and correlate termination of vein formation with mesophyll differentiation. Development 131:3445–3455CrossRefPubMedGoogle Scholar
  31. Strabala TJ, O’Donnell PJ, Smit AM, Ampomah-Dwamena C, Martin EJ, Netzler N, Nieuwenhuizen NJ, Quinn BD, Foote HC, Hudson KR (2006) Gain-of-function phenotypes of many CLAVATA3/ESR genes, including four new family members, correlate with tandem variations in the conserved CLAVATA3/ESR domain. Plant Physiol 140:1331–1344CrossRefPubMedPubMedCentralGoogle Scholar
  32. Taylor NG, Scheible WR, Cutler S, Somerville CR, Turner SR (1999) The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11:769–780CrossRefPubMedPubMedCentralGoogle Scholar
  33. Wang G, Fiers M (2010) CLE peptide signaling during plant development. Protoplasma 240:33–43CrossRefPubMedGoogle Scholar
  34. Whitford R, Fernandez A, De Groodt R, Ortega E, Hilson P (2008) Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells. Proc Natl Acad Sci USA 105:18625–18630CrossRefPubMedPubMedCentralGoogle Scholar
  35. Yaginuma H, Hirakawa Y, Kondo Y, Ohashi-Ito K, Fukuda H (2011) A novel function of TDIF-related peptides: promotion of axillary bud formation. Plant Cell Physiol 52:1354–1364CrossRefPubMedGoogle Scholar
  36. Yamaguchi YL, Ishida T, Yoshimura M, Imamura Y, Shimaoka C, Sawa S (2017) A collection of mutants for CLE-peptide-encoding genes in Arabidopsis generated by CRISPR/Cas9 mediated gene targeting. Plant Cell Physiol 58:1848–1856CrossRefPubMedGoogle Scholar
  37. Zhang H, Lin X, Han Z, Qu L, Chai J (2016) Crystal structure of PXY-TDIF complex reveals a conserved recognition mechanism among CLE peptide-receptor pairs. Cell Res 26:543–555CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xin Li
    • 1
  • Heyu Yang
    • 1
  • Caili Wang
    • 1
  • Shaohui Yang
    • 1
  • Jiehua Wang
    • 1
  1. 1.School of Environmental Science and EngineeringTianjin UniversityTianjinChina

Personalised recommendations