Advertisement

Plant Cell Reports

, Volume 37, Issue 5, pp 759–773 | Cite as

OsPKS2 is required for rice male fertility by participating in pollen wall formation

  • Ting Zou
  • Mingxing Liu
  • Qiao Xiao
  • Tao Wang
  • Dan Chen
  • Tao Luo
  • Guoqiang Yuan
  • Qiao Li
  • Jun Zhu
  • Yueyang Liang
  • Qiming Deng
  • Shiquan Wang
  • Aiping Zheng
  • Lingxia Wang
  • Ping Li
  • Shuangcheng Li
Original Article

Abstract

Key message

OsPKS2, the rice orthologous gene of Arabidopsis PKSB/LAP5, encodes a polyketide synthase that is involved in pollen wall formation in rice.

Abstract

In flowering plants, the pollen wall protects male gametes from various environmental stresses and pathogen attacks, as well as promotes pollen germination. The biosynthesis of sporopollenin in tapetal cell is critical for pollen wall formation. Recently, progress has been made in understanding sporopollenin metabolism during pollen wall development in Arabidopsis. However, little is known about the molecular mechanism that underlies the sporopollenin synthesis in pollen wall formation in rice (Oryza sativa). In this study, we identified that a point mutation in OsPKS2, a plant-specific type III polyketide synthase gene, caused male sterility in rice by affecting the normal progress of pollen wall formation. Two other allelic mutants of OsPKS2 were generated using the CRISPR/Cas9 system and are also completely male sterile. This result thus further confirmed that OsPKS2 controls rice male fertility. We also showed that OsPKS2 is an orthologous gene of Arabidopsis PKSB/LAP5 and has a tapetum-specific expression pattern. In addition, its product localizes in the endoplasmic reticulum. Results suggested that OsPKS2 is critical for pollen wall formation, and plays a conserved but differentiated role in sporopollenin biosynthesis from Arabidopsis.

Keywords

OsPKS2 PKSB/LAP5 Rice Pollen Exine Sporopollenin 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91435102 and 31570004), the Sichuan provincial founding for Distinguished Young Scholars (2015JQ0048), the Open Research Fund of State Key Laboratory of Hybrid Rice (Hunan Hybrid Rice Research Center, 2016KF10), and the Sichuan Science and Technology Support Project (2016NZ0103).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

299_2018_2265_MOESM1_ESM.docx (5.3 mb)
Supplementary material 1 (DOCX 5377 KB)

References

  1. Aarts MG et al (1997) The Arabidopsis male sterility 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J 12:615CrossRefPubMedGoogle Scholar
  2. Abe A et al (2012) Genome sequencing reveals agronomically important loci in rice using mutmap. Nat Biotechnol 30:174CrossRefPubMedGoogle Scholar
  3. Ariizumi T, Toriyama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol 62:437CrossRefPubMedGoogle Scholar
  4. Ariizumi T et al (2003) A novel male-sterile mutant of Arabidopsis thaliana, faceless pollen-1, produces pollen with a smooth surface and an acetolysis-sensitive exine. Plant Mol Biol 53:107–116CrossRefPubMedGoogle Scholar
  5. Austin MB, Noel JP (2003) The chalcone synthase superfamily of type iii polyketide synthases. Nat Prod Rep 20:79–110CrossRefPubMedGoogle Scholar
  6. Aya K et al (2009) Gibberellin modulates anther development in rice via the transcriptional regulation of gamyb. Plant Cell 21:1453–1472.  https://doi.org/10.1105/tpc.108.062935 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Blackmore S et al (2007) Pollen wall development in flowering plants. New Phytol 174:483–498.  https://doi.org/10.1111/j.1469-8137.2007.02060.x CrossRefPubMedGoogle Scholar
  8. Bourdenx B et al (2011) Overexpression of Arabidopsis eceriferum1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol 156:29–45CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chang Z et al (2016) An abc transporter, osabcg26, is required for anther cuticle and pollen exine formation and pollen-pistil interactions in rice. Plant Sci 253:21–30CrossRefPubMedGoogle Scholar
  10. Chen X et al (2002) Hen1 functions pleiotropically in Arabidopsis development and acts in c function in the flower. Development 129:1085–1094CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chen W et al (2011) Male sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. Plant Physiol 157:842CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen Y et al (2016) S-adenosylmethionine synthetase 3 is important for pollen tube growth. Plant Physiol 172:244–253.  https://doi.org/10.1104/pp.16.00774 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Colpitts CC et al (2011) Ppascl, a moss ortholog of anther-specific chalcone synthase-like enzymes, is a hydroxyalkylpyrone synthase involved in an evolutionarily conserved sporopollenin biosynthesis pathway. New Phytol 192:855–868CrossRefPubMedGoogle Scholar
  14. Daku RM et al. (2016) Ppascl, the physcomitrella patens anther-specific chalcone synthase-like enzyme implicated in sporopollenin biosynthesis, is needed for integrity of the moss spore wall and spore viability. PloS one 11:e0146817.  https://doi.org/10.1371/journal.pone.0146817 CrossRefPubMedPubMedCentralGoogle Scholar
  15. de Azevedo Souza C et al (2009) A novel fatty acyl-coa synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis. Plant Cell 21:507–525.  https://doi.org/10.1105/tpc.108.062513 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dobritsa AA et al (2009) Cyp704b1 is a long-chain fatty acid ω-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiol 151:574–589CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dobritsa AA et al (2010) Lap5 and lap6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis. Plant Physiol 153:937–955.  https://doi.org/10.1104/pp.110.157446 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Elleman CJ, Dickinson HG (1990) The role of the exine coating in pollen-stigma interactions in brassica oleracea l. New Phytol 114:511–518CrossRefGoogle Scholar
  19. Fellenberg C, Vogt T (2015) Evolutionarily conserved phenylpropanoid pattern on angiosperm pollen. Trends Plant Sci 20:212–218.  https://doi.org/10.1016/j.tplants.2015.01.011 CrossRefPubMedGoogle Scholar
  20. Ferrer JL et al (1999) Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol 6:775CrossRefPubMedGoogle Scholar
  21. Fu Z et al (2014) The rice basic helix-loop-helix transcription factor tdr interacting protein2 is a central switch in early anther development. Plant Cell 26:1512–1524.  https://doi.org/10.1105/tpc.114.123745 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gomez JF et al (2015) Anther and pollen development: a conserved developmental pathway. J Integr Plant Biol 57:876–891.  https://doi.org/10.1111/jipb.12425 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Goujon M et al (2010) A new bioinformatics analysis tools framework at embl-ebi. Nucleic Acids Res 38:W695-699CrossRefGoogle Scholar
  24. Grienenberger E et al (2010) Analysis of tetraketide α-pyrone reductase function in Arabidopsis thaliana reveals a previously unknown, but conserved, biochemical pathway in sporopollenin monomer biosynthesis. Plant Cell 22:4067–4083CrossRefPubMedPubMedCentralGoogle Scholar
  25. He X et al (2012) Influence of an er-retention signal on the n-glycosylation of recombinant human alpha-l-iduronidase generated in seeds of Arabidopsis. Plant Mol Biol 79:157–169.  https://doi.org/10.1007/s11103-012-9902-5 CrossRefPubMedGoogle Scholar
  26. Heslop-Harrison J (1968) Pollen wall development. Science 161:230–237CrossRefPubMedGoogle Scholar
  27. Hu L et al (2017) Genome-wide identification and phylogenetic analysis of the chalcone synthase gene family in rice. J Plant Res 130:95CrossRefPubMedGoogle Scholar
  28. Jepson C et al (2014) Hypericum perforatum hydroxyalkylpyrone synthase involved in sporopollenin biosynthesis-phylogeny, site-directed mutagenesis, and expression in nonanther tissues. Febs J 281:3855–3868CrossRefPubMedGoogle Scholar
  29. Jiang C et al (2008) Divergent evolution of the thiolase superfamily and chalcone synthase family. Mol Phylogenet Evol 49:691–701CrossRefPubMedGoogle Scholar
  30. Jiang J et al (2013) Pollen wall development: the associated enzymes and metabolic pathways. Plant Biol 15:249–263.  https://doi.org/10.1111/j.1438-8677.2012.00706.x CrossRefPubMedGoogle Scholar
  31. Jung KH et al (2006) Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell 18:3015–3032CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kim SS et al (2010) Lap6/polyketide synthase a and lap5/polyketide synthase b encode hydroxyalkyl α-pyrone synthases required for pollen development and sporopollenin biosynthesis in Arabidopsis thaliana. Plant Cell 22:4045CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lallemand B et al (2013) Sporopollenin biosynthetic enzymes interact and constitute a metabolon localized to the endoplasmic reticulum of tapetum cells. Plant Physiol 162:616–625.  https://doi.org/10.1104/pp.112.213124 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Li N et al (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18:2999–3014.  https://doi.org/10.1105/tpc.106.044107 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Li H et al (2010) Cytochrome p450 family member cyp704b2 catalyzes the {omega}-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell 22:173–190.  https://doi.org/10.1105/tpc.109.070326 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Li L et al (2015) An anther development f-box (adf) protein regulated by tapetum degeneration retardation (tdr) controls rice anther development. Planta 241:157–166.  https://doi.org/10.1007/s00425-014-2160-9 CrossRefPubMedGoogle Scholar
  37. Li Y et al (2016) Osacos12, an orthologue of Arabidopsis acyl-coa synthetase5, plays an important role in pollen exine formation and anther development in rice. BMC Plant Biol 16:256.  https://doi.org/10.1186/s12870-016-0943-9 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Liu Z et al (2017) Rice no pollen 1 (np1) is required for anther cuticle formation and pollen exine patterning. Plant J 91:263–277.  https://doi.org/10.1111/tpj.13561 CrossRefPubMedGoogle Scholar
  39. Mccormick S (2004) Control of male gametophyte development. Plant Cell 16:S142CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mckhann HI, Hirsch AM (1994) Isolation of chalcone synthase and chalcone isomerase cDNAs from alfalfa (Medicago sativa l.): highest transcript levels occur in young roots and root tips. Plant Mol Biol 24:767–777CrossRefPubMedGoogle Scholar
  41. Morant M et al (2007) Cyp703 is an ancient cytochrome p450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell 19:1473–1487CrossRefPubMedPubMedCentralGoogle Scholar
  42. Niu N et al (2013) Eat1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun 4:1445.  https://doi.org/10.1038/ncomms2396 CrossRefPubMedGoogle Scholar
  43. Owen HA, Makaroff CA (2001) Dex1, a novel plant protein, is required for exine pattern formation during pollen development in Arabidopsis. Plant Physiol 127:1739–1749CrossRefPubMedPubMedCentralGoogle Scholar
  44. Qin P et al (2013) Abcg15 encodes an SBC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice. Plant Cell Physiol 54:138–154.  https://doi.org/10.1093/pcp/pcs162 CrossRefPubMedGoogle Scholar
  45. Qin M et al (2016) Heterodimer formation of bnpksa or bnpksb with bnacos5 constitutes a multienzyme complex in tapetal cells and is involved in male reproductive development in brassica napus. Plant Cell Physiol 57:1643–1656CrossRefPubMedGoogle Scholar
  46. Quilichini TD et al (2015) The biosynthesis, composition and assembly of the outer pollen wall: a tough case to crack. Phytochemistry 113:170–182.  https://doi.org/10.1016/j.phytochem.2014.05.002 CrossRefPubMedGoogle Scholar
  47. Rao GM (1977) Efficiency and ffectiveness of gmma rys and ems in rce. Cytologia 42:443–450CrossRefGoogle Scholar
  48. Shi J et al (2011) Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell 23:2225–2246CrossRefPubMedPubMedCentralGoogle Scholar
  49. Shi J et al (2015) Genetic and biochemical mechanisms of pollen wall development. Trends Plant Sci 20:741–753.  https://doi.org/10.1016/j.tplants.2015.07.010 CrossRefPubMedGoogle Scholar
  50. Tamura K et al (2011) Mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739.  https://doi.org/10.1093/molbev/msr121 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Tang LK et al (2009) An anther-specific dihydroflavonol 4-reductase-like gene (drl1) is essential for male fertility in Arabidopsis. New Phytol 181:576–587CrossRefPubMedGoogle Scholar
  52. Wallace S et al (2015) Conservation of male sterility 2 function during spore and pollen wall development supports an evolutionarily early recruitment of a core component in the sporopollenin biosynthetic pathway. New Phytol 205:390–401.  https://doi.org/10.1111/nph.13012 CrossRefPubMedGoogle Scholar
  53. Wang A et al (2003) The classical ubisch bodies carry a sporophytically produced structural protein (raftin) that is essential for pollen development. Proc Natl Acad Sci USA 100:14487–14492.  https://doi.org/10.1073/pnas.2231254100 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wang Y et al (2013) Conserved metabolic steps for sporopollenin precursor formation in tobacco and rice. Physiol Plant 149:13–24CrossRefPubMedGoogle Scholar
  55. Xu D et al (2017) Defective pollen wall 2 (dpw2) encodes an acyl transferase required for rice pollen development. Plant Physiol 173:240CrossRefPubMedGoogle Scholar
  56. Yang X et al (2014) Rice cyp703a3, a cytochrome p450 hydroxylase, is essential for development of anther cuticle and pollen exine. J Integr Plant Biol 56:979–994CrossRefPubMedGoogle Scholar
  57. Yang X et al (2017) Rice fatty acyl-coa synthetase osacos12 is required for tapetum programmed cell death and male fertility. Planta 246:1–18CrossRefGoogle Scholar
  58. Yu J et al (2016) A rice Ca2+ binding protein is required for tapetum function and pollen formation. Plant Physiol 172:1772CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zhang D, Li H (2014) Exine export in pollen. In: Geisler M (ed) Plant abc transporters. Springer, Cham, pp 49–62. https://doi.org/10.1007/978-3-319-06511-3_4Google Scholar
  60. Zhang D, Wilson ZA (2009) Stamen specification and anther development in rice. Chin Sci Bull 54:2342–2353.  https://doi.org/10.1007/s11434-009-0348-3 CrossRefGoogle Scholar
  61. Zhang DS et al. (2008) Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Mol Plant 1:599–610  https://doi.org/10.1093/mp/ssn028 CrossRefPubMedGoogle Scholar
  62. Zhang D et al (2011) Cytological analysis and genetic control of rice anther development. J Genet Genom 38:379–390.  https://doi.org/10.1016/j.jgg.2011.08.001 CrossRefGoogle Scholar
  63. Zhang D et al (2016) Role of lipid metabolism in plant pollen exine development. In: Nakamura Y, Li-Beisson Y (eds) Lipids in plant and algae development. Springer, Cham, pp 315–337. https://doi.org/10.1007/978-3-319-25979-6_13CrossRefGoogle Scholar
  64. Zhao G et al. (2015) Two atp binding cassette g (abcg) transporters, osabcg26 and osabcg15, collaboratively regulate rice male reproduction. Plant Physiol.  https://doi.org/10.1104/pp.15.00262 Google Scholar
  65. Zhu L et al (2013) Post-meiotic deficient anther1 (pda1) encodes an abc transporter required for the development of anther cuticle and pollen exine in rice. J Plant Biol 56:59–68CrossRefGoogle Scholar
  66. Zhu X et al (2017) The polyketide synthase ospks2 is essential for pollen exine and ubisch body patterning in rice. J Integr Plant Biol 59:612–628.  https://doi.org/10.1111/jipb.12574 CrossRefPubMedGoogle Scholar
  67. Zou T et al (2017a) Knockout of osacos12 caused male sterility in rice. Mol Breed 37:126CrossRefGoogle Scholar
  68. Zou T et al (2017b) An atypical strictosidine synthase, osstrl2, plays key roles in anther development and pollen wall formation in rice. Sci Rep 7:6863.  https://doi.org/10.1038/s41598-017-07064-4 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Zou T et al (2017c) Oslap6/ospks1, an orthologue of Arabidopsis pksa/lap6, is critical for proper pollen exine formation. Rice 10:53.  https://doi.org/10.1186/s12284-017-0191-0 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ting Zou
    • 1
    • 2
    • 4
  • Mingxing Liu
    • 1
    • 2
  • Qiao Xiao
    • 1
    • 2
  • Tao Wang
    • 1
    • 2
  • Dan Chen
    • 1
    • 2
  • Tao Luo
    • 1
    • 2
  • Guoqiang Yuan
    • 1
    • 2
  • Qiao Li
    • 1
    • 2
    • 4
  • Jun Zhu
    • 1
    • 2
    • 3
  • Yueyang Liang
    • 1
    • 2
  • Qiming Deng
    • 1
    • 2
  • Shiquan Wang
    • 1
    • 2
  • Aiping Zheng
    • 1
    • 2
  • Lingxia Wang
    • 1
    • 2
  • Ping Li
    • 1
    • 2
    • 3
  • Shuangcheng Li
    • 1
    • 2
    • 3
  1. 1.State Key Laboratory of Hybrid RiceSichuan Agricultural UniversityChengduChina
  2. 2.Rice Research InstituteSichuan Agricultural UniversityWenjiangChina
  3. 3.State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
  4. 4.Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special PlantsChongqing University of Arts and SciencesYongchuanChina

Personalised recommendations