Skip to main content
Log in

QTL-Seq-based genetic analysis identifies a major genomic region governing dwarfness in rice (Oryza sativa L.)

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

A major dwarfing region for plant height, asd1, was identified employing the next-generation sequencing-based QTL-Seq approach from a dwarf mutant and is demonstrated to be responsible for the dwarf nature with least penalty on yield in rice.

Abstract

The yield plateauing of modern rice is witnessed since many decades due to the narrow genetic base owing to the usage of a single recessive gene, i.e., semi-dwarf-1 (sd-1) for development of short-statured varieties throughout the world. This calls for the searching of alternate sources for short stature in rice. To this end, we made an attempt to uncover yet another, but valuable dwarfing gene employing next-generation sequencing (NGS)-based QTL-Seq approach. Here, we have identified a major QTL governing plant height on chromosome 1, i.e., alternate semi-dwarf 1 (asd1) from an F2 mapping population derived from a cross between a dwarf mutant, LND384, and a tall landrace, INRC10192. Fine mapping of asd1 region employing sequence-based indel markers delimited the QTL region to 67.51 Kb. The sequencing of the QTL region and gene expression analysis predicted a gene that codes for IWS1 (C-terminus family protein). Furthermore, marker-assisted introgression of the asd1 into tall landrace, INRC10192, reduced its plant height substantially while least affecting the yield and its component traits. Hence, this novel dwarfing gene, asd1, has profound implications in rice breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biot 30:174–178. https://doi.org/10.1038/nbt.2095

    Article  CAS  Google Scholar 

  • Aquino RC, Jennings PR (1966) Inheritance and significance of dwarfism in an indica rice variety. Crop Sci 6:551–554

    Article  Google Scholar 

  • Asano K, Takashi T, Miura K, Qian Q, Kitano H, Matsuoka M, Ashikari M (2007) Genetic and molecular analysis of utility of sd1 alleles in rice breeding. Breed Sci 57:53–58. doi.https://doi.org/10.1270/jsbbs.57.53

    Article  CAS  Google Scholar 

  • Asano K, Yamasaki M, Takuno S, Miura K, Katagiri S, Ito T, Doi K, Wu J, Ebana K, Matsumoto T, Innan H, Kitano H, Ashikari M, Matsuoka M (2011) Artificial selection for a green revolution gene during japonica rice domestication. Proc Natl Acad Sci USA 108(27):11034–11039. https://doi.org/10.1073/pnas.1019490108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bozzola J, Russell L (1999) Electron microscopy: principles and techniques for biologists. Jones and Bartlett Publishers, Sudbury

    Google Scholar 

  • Das S, Upadhyaya HD, Bajaj D, Kujur A, Badoni S, Laxmi, Kumar V, Tripathi S, Laxmipati CL, Sharma S, Singh S, Tyagi AK, Parida SK (2015) Deploying QTL-Seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res 22(3):193–203. https://doi.org/10.1093/dnares/dsv004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Z, Ueguchi Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuokaa M (2003) A Rice Brassinosteroid deficient mutant, Ebisu Dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15:2900–2910 https://doi.org/10.1105/tpc.014712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iftekharuddaula KM, Salam MA, Newaz MA, Ahmed HU, Collard BCY, Septiningsih EM, Sanchez DL, Pamplona AM, Mackill DJ (2012) Comparison of phenotypic versus marker assisted background selection for the SUB1 QTL during backcrossing in rice. Breed Sci 62(3):216–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M (2004) A rice semidwarf gene Tan-Ginbozu D35 encodes the gibberellins biosynthesis enzyme ent-kaurene oxidase. Plant Mol Biol 54(4):533–547. https://doi.org/10.1023/B:PLAN.0000038261.21060.47

    Article  CAS  PubMed  Google Scholar 

  • Jan A, Kitano H, Matsumoto H, Komatsu S (2006) The rice OsGAE1 is a novel gibberellins- regulated gene and involved in rice growth. Plant Mol Biol 62(3):439–452. https://doi.org/10.1007/s11103-006-9030-1

    Article  CAS  PubMed  Google Scholar 

  • Jiang G, Liang G, Zhai W, Gu M, Lu R, Xu J, Zhu L (2002) Genetic mapping of a new semi-dwarf gene, sd-t(t), in indica rice and estimation of the physical distance of the mapping region. Sci China (Ser C) 32:193–200

    Google Scholar 

  • Li JX, Yu SB, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q (2000). Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid. Theor Appl Genet 101:248–254

    Article  CAS  Google Scholar 

  • Li L, Ye H, Guo H, Yin Y (2010) Arabidopsis IWS1 interacts with transcription factors BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression. PNAS 107(8):3918–3923. https://doi.org/10.1073/pnas.0909198107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lincoln S, Daly M, Lander E (1993) Mapping genes controlling quantitative traits with MAPMAKER/QTL 1.1: a tutorial and reference manual 2nd edn. Whitehead Institute for Biomedical Research, Cambridge, pp 1–43

    Google Scholar 

  • Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S (2014) QTL Seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet 127(7):1491–1499. https://doi.org/10.1007/s00122-014-2313-z

    Article  PubMed  Google Scholar 

  • Murray M, Thompson W (1980) Rapid isolation of high molecular weight DNA. Nucleic Acids Res 8(19):4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi- Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Green revolution: a mutant Gibberellin-synthesis gene in rice. Nature 416(6882):701–702. https://doi.org/10.1038/416701a

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Sentoku N, Miura Y, Hirochika H, Kitanoc H, Matsuoka M (1999) Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO J 18(4):992–1002. https://doi.org/10.1093/emboj/18.4.992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • She K, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, Tsuge T, Matsumoto K, Kudoh M, Itoh E, Kikuchi S, Kishimoto N, Yazaki J, Ando T, Yano M, Aoyama T, Sasaki T, Satoh H, Shimada H (2010) A novel factor FLOURY ENDOSPERM 2 is involved in regulation of rice grain size and starch quality. Plant Cell 22(10):3280–3294. https://doi.org/10.1105/tpc.109.070821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh VK, Khan AW, Jaganathan D, Thudi M, Roorkiwal M, Takagi Garg V, Kumar V, Chitikineni A, Gaur PM, Sutton T, Terauchi R, Varshney RK (2016) QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnol J 14:2110–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Abe A, Yoshida k, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsuhi H, Tamiru M, Takuno S (2013) QTL-Seq: rapid mapping of quantitative trait loci in rice by whole genome sequencing of DNA from two bulked populations. Plant J 74(1):174–183. https://doi.org/10.1111/tpj.12105

    Article  CAS  PubMed  Google Scholar 

  • Takeda K (1977) Internode elongation and dwarfism in some graminaceous plants. Gamma Field Sym 16:1–18

    Google Scholar 

  • Tong JP, Liu XJ, Zhang SY, Li SQ, Peng XJ, Yang J, Zhu YG (2008) Identification, genetic characterization, GA response and molecular mapping of Sdt97: a dominant mutant gene conferring semi-dwarfism in rice (Oryza sativa L.). Genet Res Camb 89:1–11

    Google Scholar 

  • Ueguchi Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwaski Y, Kitano H, Matsuoka M (2000) Rice dwarf mutant d1, which is defective in the alpha subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci 97(21):11638–11643. https://doi.org/10.1073/pnas.97.21.11638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Liu YZ, Zhang JG, Chen ZQ (2004) Genetic analysis of space induced rice Dwarf mutant CHA-1 and its response to Gibberellic acid (GA3). Chin J Rice Sci 18(5):391–395

    CAS  Google Scholar 

  • Wang L, Xu Y, Ma QB, Li D, Xu ZH, Chong K (2006) Heterotrimeric G protein alpha subunit is involved in rice brassinosteroid response. Cell Res 16:916–922. https://doi.org/10.1038/sj.cr.7310111

    Article  PubMed  Google Scholar 

  • Xu F, Sun X, Chen Y, Huang Y, Tong C, Bao J (2015) Rapid identification of major QTLs associated with rice grain weight and their utilization. PLoS One 10(3):e0122206. https://doi.org/10.1371/journal.pone.0122206

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M (2000) Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12(9):1591–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao XQ, Liang GH, Zhou JS, Yan CJ, Cao XY, Gu MH (2005) Molecular mapping of two semi-dwarf genes in an indica rice variety Aitai yin3 (Oryza sativa L.). Acta Genet Sin 32:189–196

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Department of Science and Technology (DST), India under “Fast Track scheme for young scientists” (Sanction Order: SR/FT/LS-061/2009; 13.12.2012) awarded to LR. GK is grateful to DST for providing fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshminarayana R. Vemireddy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Prakash P. Kumar.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadambari, G., Vemireddy, L.R., Srividhya, A. et al. QTL-Seq-based genetic analysis identifies a major genomic region governing dwarfness in rice (Oryza sativa L.). Plant Cell Rep 37, 677–687 (2018). https://doi.org/10.1007/s00299-018-2260-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-018-2260-2

Keywords

Navigation