Skip to main content
Log in

Characterization of promoter of EgPAL1, a novel PAL gene from the oil palm Elaeis guineensis Jacq.

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The oil palm EgPAL1 gene promoter and its regulatory region were functional as a promoter in the heterologous system of Arabidopsis according to the cis-acting elements present in that region. The promoter was developmentally regulated, vascular tissue specific and responsive to water stress agents.

Abstract

Phenylalanine ammonia lyase (PAL, EC 4.3.1.24) is the key enzyme of the phenylpropanoid pathway which plays important roles in plant development and adaptation. To date, there is no report on the study of PAL from oil palm (Elaeis guineensis), an economically important oil crop. In this study, the 5′ regulatory sequence of a highly divergent oil palm PAL gene (EgPAL1) was isolated and fused with GUS in Arabidopsis to create two transgenic plants carrying the minimal promoter with (2302 bp) and without its regulatory elements (139 bp). The regulatory sequence contained cis-acting elements known to be important for plant development and stress response including the AC-II element for lignin biosynthesis and several stress responsive elements. The promoter and its regulatory region were fully functional in Arabidopsis. Its activities were characterised by two common fundamental features of PAL which are responsive to plant internal developmental programme and external factors. The promoter was developmentally regulated in certain organs; highly active in young organs but less active or inactive in mature organs. The presence of the AC elements and global activity of the EgPAL1 promoter in all organs resembled the property of lignin-related genes. The existence of the MBS element and enhancement of the promoter activity by PEG reflected the behaviour of drought-responsive genes. Our findings provide a platform for evaluating oil palm gene promoters in the heterologous system of Arabidopsis and give insights into the activities of EgPAL1 promoter in oil palm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EgPAL1 :

Elaeis guineensis PAL1

GUS:

β-glucuronidase

PAL:

Phenylalanine ammonia lyase

References

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Carocha V, Soler M, Hefer C, Cassan-Wang H, Fevereiro P, Myburg AA, Paiva JA, Grima-Pettenati J (2015) Genome-wide analysis of the lignin toolbox of Eucalyptus grandis. New Phytol 206:1297–1313

    Article  CAS  PubMed  Google Scholar 

  • Carroll BJ, Klimyuk VI, Thomas CM, Bishop GJ, Harrison K, Scofield SR, Jones JD (1995) Germinal transpositions of the maize element Dissociation from T-DNA loci in tomato. Genetics 139:407–420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cass CL, Peraldi A, Dowd PF, Mottiar Y, Santoro N, Karlen SD, Bukhman YV, Foster CE, Thrower N, Bruno LC, Moskvin OV, Johnson ET, Willhoit ME, Phutane M, Ralph J, Mansfield SD, Nicholson P, Sedbrook JC (2015) Effects of PHENYLALANINE AMMONIA LYASE (PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium. J Exp Bot 66:4317–4335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaubet N, Flenet M, Clement B, Brignon P, Gigot C (1996) Identification of cis-elements regulating the expression of an Arabidopsis histone H4 gene. Plant J 10:425–435

    Article  CAS  PubMed  Google Scholar 

  • Cho MH, Lee SW (2015) Phenolic phytoalexins in rice: biological functions and biosynthesis. Int J Mol Sci 16:29120–29133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehghan S, Sadeghi M, Poppel A, Fischer R, Lakes-Harlan R, Kavousi HR, Vilcinskas A, Rahnamaeian M (2014) Differential inductions of phenylalanine ammonia-lyase and chalcone synthase during wounding, salicylic acid treatment, and salinity stress in safflower, Carthamus tinctorius. Biosci Rep 34:273–282. doi:10.1042/BSR20140026

    Article  CAS  Google Scholar 

  • Dunn MA, White AJ, Vural S, Hughes MA (1998) Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.). Plant Mol Biol 38:551–564

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. CMLS Cell Mol Life Sci 72:673–689

    Article  CAS  PubMed  Google Scholar 

  • Fock-Bastide I, Palama TL, Bory S et al (2014) Expression profiles of key phenylpropanoid genes during Vanilla planifolia pod development reveal a positive correlation between PAL gene expression and vanillin biosynthesis. Plant Physiol Biochem 74:304–314

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Ouyang C, Wang S, Xu Y, Tang L, Chen F (2008) Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings. Plant Soil Environ 54:374–381

    CAS  Google Scholar 

  • Glover BJ, Martin C (2012) Anthocyanins. Curr Biol 22:R147-R150

    Article  Google Scholar 

  • Hatton D, Sablowski R, Yung MH, Smith C, Schuch W, Bevan M (1995) Two classes of cis sequences contribute to tissue-specific expression of a PAL2 promoter in transgenic tobacco. Plant J 7:859–876

    Article  CAS  PubMed  Google Scholar 

  • He Q, Zhao S, Ma Q, Zhang Y, Huang L, Li G, Hao L (2014) Endogenous salicylic acid levels and signaling positively regulate Arabidopsis response to polyethylene glycol-simulated drought stress. J Plant Growth Regul 33:871–880

    Article  CAS  Google Scholar 

  • Hoch WA, Singsaas EL, McCown BH (2003) Resorption protection. Anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels. Plant Physiol 133:1296–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoeren FU, Dolferus R, Wu Y, Peacock WJ, Dennis ES (1998) Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen. Genetics 149:479–490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153:1526–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iiyama K, Lam TB-T, Stone BA (1994) Covalent cross-links in the cell wall. Plant Physiol 104:315–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobo-Velazquez DA, Gonzalez-Aguero M, Cisneros-Zevallos L (2015) Cross-talk between signaling pathways: the link between plant secondary metabolite production and wounding stress response. Sci Rep 5:8608. doi:10.1038/srep08608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferson R (1987) Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Jefferson R, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kao Y-Y, Harding SA, Tsai C-J (2002) Differential expression of two distinct Phenylalanine Ammonia-Lyase genes in condensed tannin-accumulating and lignifying cells of quaking aspen. Plant Physiol 130:796–807

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim DS, Hwang BK (2014) An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. J Exp Bot 65:2295–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleine S, Müller C (2014) Drought stress and leaf herbivory affect root terpenoid concentrations and growth of Tanacetum vulgare. J Chem Ecol 40:1115–1125

    Article  CAS  PubMed  Google Scholar 

  • Kropat J, Tottey S, Birkenbihl RP, Depège N, Huijser P, Merchant S (2005) A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element. Proc Natl Acad Sci USA 102:18730–18735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol msw054. doi:10.1093/molbev/msw054

    Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Nong Q, Solanki MK, Liang Q, Xie J, Liu X, Li Y, Wang W, Yang L (2016) Differential expression profiles and pathways of genes in sugarcane leaf at elongation stage in response to drought stress. Sci Rep 6:25698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loytynoja A (2014) Phylogeny-aware alignment with PRANK. Methods Mol Biol 1079:155–170

    Article  PubMed  Google Scholar 

  • McKiernan AB, Potts BM, Brodribb TJ, Hovenden MJ, Davies NW, McAdam SAM, Ross JJ, Rodemann T, O’Reilly-Wapstra JM (2016) Responses to mild water deficit and rewatering differ among secondary metabolites but are similar among provenances within Eucalyptus species. Tree Physiol 36:133–147

    CAS  PubMed  Google Scholar 

  • Naoumkina MA, Zhao Q, Gallego-Giraldo L, Dai X, Zhao PX, Dixon RA (2010) Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol 11:829–846

    CAS  PubMed  Google Scholar 

  • Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park SC, Kwon HB, Shih MC (1996) Cis-acting elements essential for light regulation of the nuclear gene encoding the A subunit of chloroplast glyceraldehyde 3-phosphate dehydrogenase in Arabidopsis thaliana. Plant Physiol 112:1563–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH, Yoon HW, Lee SH, Chung WS, Lim CO, Lee SY, Hong JC, Cho MJ (2004) Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135:2150–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pombo MA, Martínez GA, Civello PM (2011) Cloning of FaPAL6 gene from strawberry fruit and characterization of its expression and enzymatic activity in two cultivars with different anthocyanin accumulation. Plant Sci 181:111–118

    Article  CAS  PubMed  Google Scholar 

  • Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohde A, Morreel K, Ralph J, Goeminne G, Hostyn V, De Rycke R, Kushnir S, Van Doorsselaere J, Joseleau JP, Vuylsteke M, Van Driessche G, Van Beeumen J, Messens E, Boerjan W (2004) Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell 16:2749–2771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouster J, Leah R, Mundy J, Cameron-Mills V (1997) Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J 11:513–523

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Somoza I, Martinez M, Abraham Z, Diaz I, Carbonero P (2006) Ternary complex formation between HvMYBS3 and other factors involved in transcriptional control in barley seeds. Plant J 47:269–281

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Yonekura-Sakakibara K, Nakabayashi R et al (2013) The flavonoid biosynthetic pathway in Arabidopsis: Structural and genetic diversity. Plant Physiol Biochem 72:21–34

    Article  CAS  PubMed  Google Scholar 

  • Shi R, Sun Y-H, Li Q, Heber S, Sederoff R, Chiang VL (2010) Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiol 51:144–163

    Article  CAS  PubMed  Google Scholar 

  • Shi R, Shuford CM, Wang JP, Sun Y-H, Yang Z, Chen H-C, Tunlaya-Anukit S, Li Q, Liu J, Muddiman DC, Sederoff RR, Chiang VL (2013) Regulation of phenylalanine ammonia-lyase (PAL) gene family in wood forming tissue of Populus trichocarpa. Planta 238:487–497

    Article  CAS  PubMed  Google Scholar 

  • Shine MB, Yang J-W, El-Habbak M, Nagyabhyru P, Fu D-Q, Navarre D, Ghabrial S, Kachroo P, Kachroo A (2016) Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. New Phytol 212:627–636

    Article  CAS  PubMed  Google Scholar 

  • Simpson SD, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J 33:259–270

    Article  CAS  PubMed  Google Scholar 

  • Smeets K, Ruytinx J, Van Belleghem F, Semane B, Lin D, Vangronsveld J, Cuypers A (2008) Critical evaluation and statistical validation of a hydroponic culture system for Arabidopsis thaliana. Plant Physiol Biochem 46:212–218

    Article  CAS  PubMed  Google Scholar 

  • Song J, Wang Z (2011) RNAi-mediated suppression of the phenylalanine ammonia-lyase gene in Salvia miltiorrhiza causes abnormal phenotypes and a reduction in rosmarinic acid biosynthesis. J Plant Res 124:183–192

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    Article  CAS  PubMed  Google Scholar 

  • Thum KE, Kim M, Morishige DT, Eibl C, Koop HU, Mullet JE (2001) Analysis of barley chloroplast psbD light-responsive promoter elements in transplastomic tobacco. Plant Mol Biol 47:353–366

    Article  CAS  PubMed  Google Scholar 

  • Tsuyama T, Takabe K (2014) Distribution of lignin and lignin precursors in differentiating xylem of Japanese cypress and poplar. J Wood Sci 60:353–361

    Article  CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1999) Dimerization and DNA binding of auxin response factors. Plant J 19:309–319

    Article  CAS  PubMed  Google Scholar 

  • Vaughan MM, Christensen S, Schmelz EA, Huffaker A, McAuslane HJ, Alborn HT, Romero M, Allen LH, Teal PEA (2015) Accumulation of terpenoid phytoalexins in maize roots is associated with drought tolerance. Plant Cell Environ 38:2195–2207

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Yuan F, Pan Q, Li M, Wang G, Zhao J, Tang K (2010) Isolation and functional analysis of the Catharanthus roseus deacetylvindoline-4-O-acetyltransferase gene promoter. Plant Cell Report 29:185–192

    Article  Google Scholar 

  • Wang Y, Chantreau M, Sibout R, Hawkins S (2013) Plant cell wall lignification and monolignol metabolism. Front Plant Sci 4:1–14. doi:10.3389/fpls.2013.00220

    Google Scholar 

  • Wang JP, Naik PP, Chen H-C, Shi R, Lin C-Y, Liu J, Shuford CM, Li Q, Sun Y-H, Tunlaya-Anukit S, Williams CM, Muddiman DC, Ducoste JJ, Sederoff RR, Chiang VL (2014) Complete proteomic-based enzyme reaction and inhibition kinetics reveal how monolignol biosynthetic enzyme families affect metabolic flux and lignin in Populus trichocarpa. Plant Cell 26:894–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Qian J, Yao L, Lu Y (2015) Enhanced production of flavonoids by methyl jasmonate elicitation in cell suspension culture of Hypericum perforatum. Bioresour Bioprocess 2:5

    Article  Google Scholar 

  • Wu Z, Gui S, Wang S, Ding Y (2014) Molecular evolution and functional characterisation of an ancient phenylalanine ammonia-lyase gene (NnPAL1) from Nelumbo nucifera: novel insight into the evolution of the PAL family in angiosperms. BMC Evol Biol 14:100. doi:10.1186/1471-2148-14-100

    Article  PubMed  PubMed Central  Google Scholar 

  • Xi HF, Ma L, Wang LN et al (2015) Differential response of the biosynthesis of resveratrols and flavonoids to UV-C irradiation in grape leaves. New Zeal J Crop Hortic Sci 43:163–172

    Article  CAS  Google Scholar 

  • Xu Q, Yin X-r, Zeng J-k, Ge H, Song M, Xu C-j, Li X, Ferguson IB, Chen K-s (2014) Activator- and repressor-type MYB transcription factors are involved in chilling injury induced flesh lignification in loquat via their interactions with the phenylpropanoid pathway. J Exp Bot 65:4349–4359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yusuf CYL (2012) Molecular cloning and expression analysis of the Phenylalanine Ammonia Lyase genes in oil palm (Elaeis guineensis Jacq.). Dissertation, Universiti Putra Malaysia

  • Zandalinas SI, Rivero RM, Martínez V, Gómez-Cadenas A, Arbona V (2016) Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biol 16:105. doi:10.1186/s12870-016-0791-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Henriques R, Lin SS, Niu QW, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Wei R, Chen S, Jiang J, Li H, Huang H, Yang G, Wang S, Wei H, Liu G (2015) Functional characterization of CCR in birch (Betula platyphylla × Betula pendula) through overexpression and suppression analysis. Physiol Plant 154:283–296

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Fu X, Hao X, Zhang L, Wang L, Qian H, Zhao J (2016) Molecular cloning and promoter analysis of the specific salicylic acid biosynthetic pathway gene phenylalanine ammonia-lyase (AaPAL1) from Artemisia annua. Biotechnol Appl Biochem 63:514–524

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Ye ZH (2009) Transcriptional regulation of lignin biosynthesis. Plant Signal Behav 4:1028–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Xie X, Lin H, Sui S, Shen R, Yang Z, Lu K, Li M, Liu YG (2015) Isolation and functional characterization of a Phenylalanine Ammonia-Lyase Gene (SsPAL1) from Coleus (Solenostemon scutellarioides (L.) Codd). Molecules 20:16833–16851

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by Malaysian Palm Oil Board (Grant no.: 6366900). YCYL was supported by the MyPhD scholarship from Ministry of Education Malaysia. The authors would like to thank Prof. Dr. Ho Chai Ling for granting access to the research facilities in Molecular Biology Laboratory, UPM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Puad Abdullah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Teodoro Cardi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusuf, C.Y.L., Abdullah, J.O., Shaharuddin, N.A. et al. Characterization of promoter of EgPAL1, a novel PAL gene from the oil palm Elaeis guineensis Jacq.. Plant Cell Rep 37, 265–278 (2018). https://doi.org/10.1007/s00299-017-2228-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-017-2228-7

Keywords

Navigation