Transgenerational stress-adaption: an opportunity for ecological epigenetics

Abstract

In the recent years, there has been considerable interest to investigate the adaptive transgenerational plasticity of plants and how a “stress memory” can be transmitted to the following generation. Although, increasing evidence suggests that transgenerational adaptive responses have widespread ecological relevance, the underlying epigenetic processes have rarely been elucidated. On the other hand, model plant species have been deeply investigated in their genome-wide methylation landscape without connecting this to the ecological reality of the plant. What we need is the combination of an ecological understanding which plant species would benefit from transgenerational epigenetic stress-adaption in their natural habitat, combined with a deeper molecular analysis of non-model organisms. Only such interdisciplinary linkage in an ecological epigenetic study could unravel the full potential that epigenetics could play for the transgenerational stress-adaption of plants.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Alonso C, Pérez R, Bazaga P, Herrera CM (2015) Global DNA cytosine methylation as an evolving trait: phylogenetic signal and correlated evolution with genome size in angiosperms. Front Genet 5:1–9. doi:10.3389/fgene.2015.00004

    Google Scholar 

  2. Alonso C, Balao F, Bazaga P, Pérez R (2016a) Epigenetic contribution to successful polyploidizations: variation in global cytosine methylation along an extensive ploidy series in Dianthus broteri (Caryophyllaceae). New Phytol 212:571–576. doi:10.1111/nph.14138

    CAS  Article  PubMed  Google Scholar 

  3. Alonso C, Pérez R, Bazaga P et al (2016b) MSAP markers and global cytosine methylation in plants: a literature survey and comparative analysis for a wild-growing species. Mol Ecol Resour 16:80–90. doi:10.1111/1755-0998.12426

    CAS  Article  PubMed  Google Scholar 

  4. Balmer A, Pastor V, Gamir J et al (2015) The “prime-ome”: towards a holistic approach to priming. Trends Plant Sci 20:443–452. doi:10.1016/j.tplants.2015.04.002

    CAS  Article  PubMed  Google Scholar 

  5. Bej S, Basak J (2017) Abiotic stress induced epigenetic modifications in plants: how much do we know? In: Rajewsky N, Jurga S, Barciszewski J (eds) Plant epigenetics. Springer, Cham. doi:10.1007/978-3-319-55520-1_24

    Google Scholar 

  6. Bilichak A, Kovalchuk I (2016) Transgenerational response to stress in plants and its application for breeding. J Exp Bot 67:2081–2092. doi:10.1093/jxb/erw066

    CAS  Article  PubMed  Google Scholar 

  7. Bossdorf O, Zhang Y (2011) A truly ecological epigenetics study. Mol Ecol 20:1572–1574. doi:10.1111/j.1365-294X.2011.05044.x

    Article  PubMed  Google Scholar 

  8. Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11:106–115. doi:10.1111/j.1461-0248.2007.01130.x

    PubMed  Google Scholar 

  9. Bräutigam K, Vining KJ, Lafon-Placette C et al (2013) Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecol Evol 3:399–415. doi:10.1002/ece3.461

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007) Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci 173:603–608. doi:10.1016/j.plantsci.2007.09.002

    CAS  Article  Google Scholar 

  11. Colicchio J (2017) Transgenerational effects alter plant defence and resistance in nature. J Evol Biol 30:664–680. doi:10.1111/jeb.13042

    CAS  Article  PubMed  Google Scholar 

  12. Colicchio JM, Monnahan PJ, Kelly JK, Hileman LC (2015) Gene expression plasticity resulting from parental leaf damage in Mimulus guttatus. New Phytol 205:894–906. doi:10.1111/nph.13081

    CAS  Article  PubMed  Google Scholar 

  13. Crisp PA, Ganguly D, Eichten SR et al (2016) Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics. Sci Adv 2:e1501340–e1501340. doi:10.1126/sciadv.1501340

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dalakouras A, Wassenegger M (2013) Revisiting RNA-directed DNA methylation. RNA Biol 10:1–3. doi:10.4161/rna.23542

    Article  Google Scholar 

  15. Dowen RH, Pelizzola M, Schmitz RJ et al (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci USA 109:E2183-91. doi:10.1073/pnas.1209329109

    Article  PubMed  Google Scholar 

  16. Dubin MJ, Zhang P, Meng D et al (2015) DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. Elife 4:1–23. doi:10.7554/eLife.05255

    Article  Google Scholar 

  17. Eichten SR, Springer NM (2015) Minimal evidence for consistent changes in maize DNA methylation patterns following environmental stress. Front Plant Sci 6:308. doi:10.3389/fpls.2015.00308

    Article  PubMed  PubMed Central  Google Scholar 

  18. Finnegan J, McElroy D (1994) Transgene inactivation: plants fight back! Nat Biotechnol 12:883–888. doi:10.1038/nbt0994-883

    Article  Google Scholar 

  19. Foust CM, Preite V, Schrey AW et al (2016) Genetic and epigenetic differences associated with environmental gradients in replicate populations of two salt marsh perennials. Mol Ecol 25:1639–1652. doi:10.1111/mec.13522

    CAS  Article  PubMed  Google Scholar 

  20. Franklin RE, Gosling RG (1953) Molecular configuration in sodium thymonucleate. Nature 171:740–741. doi:10.1038/171740a0

    CAS  Article  PubMed  Google Scholar 

  21. González APR, Dumalasová V, Rosenthal J et al (2017) The role of transgenerational effects in adaptation of clonal offspring of white clover (Trifolium repens) to drought and herbivory. Evol Ecol 31:345–361. doi:10.1007/s10682-016-9844-5

    Article  Google Scholar 

  22. Gutzat R, Mittelsten Scheid O (2012) Epigenetic responses to stress: triple defense? Curr Opin Plant Biol 15:568–573. doi:10.1016/j.pbi.2012.08.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Hagmann J, Becker C, Müller J et al (2015) Century-scale methylome stability in a recently diverged Arabidopsis thaliana lineage. PLoS Genet 11:e1004920. doi:10.1371/journal.pgen.1004920

    Article  PubMed  PubMed Central  Google Scholar 

  24. Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157:95–109. doi:10.1016/j.cell.2014.02.045

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Herman JJ, Sultan SE (2011) Adaptive transgenerational plasticity in plants: case studies, mechanisms, and implications for natural populations. Front Plant Sci 2:102. doi:10.3389/fpls.2011.00102

    Article  PubMed  PubMed Central  Google Scholar 

  26. Herman JJ, Sultan SE (2016) DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proc R Soc B Biol Sci 283:20160988. doi:10.1098/rspb.2016.0988

    Article  Google Scholar 

  27. Herrera CM, Bazaga P (2011) Untangling individual variation in natural populations: ecological, genetic and epigenetic correlates of long-term inequality in herbivory. Mol Ecol 20:1675–1688. doi:10.1111/j.1365-294X.2011.05026.x

    CAS  Article  PubMed  Google Scholar 

  28. Herrera CM, Bazaga P (2013) Epigenetic correlates of plant phenotypic plasticity: DNA methylation differs between prickly and nonprickly leaves in heterophyllous Ilex aquifolium (Aquifoliaceae) trees. Bot J Linn Soc 171:441–452. doi:10.1111/boj.12007

    Article  Google Scholar 

  29. Herrera CM, Bazaga P (2016) Genetic and epigenetic divergence between disturbed and undisturbed subpopulations of a Mediterranean shrub: a 20-year field experiment. Ecol Evol 6:3832–3847. doi:10.1002/ece3.2161

    Article  PubMed  PubMed Central  Google Scholar 

  30. Herrera CM, Medrano M, Bazaga P (2013) Epigenetic differentiation persists after male gametogenesis in natural populations of the perennial herb Helleborus foetidus (Ranunculaceae). PLoS One 8:1–8. doi:10.1371/journal.pone.0070730

    Google Scholar 

  31. Herrera CM, Medrano M, Bazaga P (2016) Comparative spatial genetics and epigenetics of plant populations: heuristic value and a proof of concept. Mol Ecol 25:1653–1664. doi:10.1111/mec.13576

    CAS  Article  PubMed  Google Scholar 

  32. Herrera CM, Medrano M, Bazaga P (2017) Comparative epigenetic and genetic spatial structure of the perennial herb Helleborus foetidus: isolation by environment, isolation by distance, and functional trait divergence. Am J Bot 104:1195–1204. doi:10.3732/ajb.1700162

    Article  Google Scholar 

  33. Hilker M, Schwachtje J, Baier M et al (2016) Priming and memory of stress responses in organisms lacking a nervous system. Biol Rev 91:1118–1133. doi:10.1111/brv.12215

    Article  PubMed  Google Scholar 

  34. Holeski LM, Jander G, Agrawal A a (2012) Transgenerational defense induction and epigenetic inheritance in plants. Trends Ecol Evol 27:618–626. doi:10.1016/j.tree.2012.07.011

    Article  PubMed  Google Scholar 

  35. Iwasaki M, Paszkowski J (2014a) Epigenetic memory in plants. EMBO J 33:1987–1998. doi:10.15252/embj.201488883

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Iwasaki M, Paszkowski J (2014b) Identification of genes preventing transgenerational transmission of stress-induced epigenetic states. Proc Natl Acad Sci 111:8547–8552. doi:10.1073/pnas.1402275111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Johnson TB, Coghill RD (1925) Researches on pyrimidines. C111. The discovery of 5-methyl-cytosine in tuberculinic acid, the nucleic acid of the tubercle bacillus 1. J Am Chem Soc 47:2838–2844. doi:10.1021/ja01688a030

    CAS  Article  Google Scholar 

  38. Kawakatsu T, Huang SC, Jupe F et al (2016) Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell 166:492–505. doi:10.1016/j.cell.2016.06.044

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Keller TE, Lasky JR, Yi SV (2016) The multivariate association between genomewide DNA methylation and climate across the range of Arabidopsis thaliana. Mol Ecol 25:1823–1837. doi:10.1111/mec.13573

    CAS  Article  PubMed  Google Scholar 

  40. Kilvitis HJ, Alvarez M, Foust CM et al (2014) Ecological epigenetics. In: Landry C, Aubin-Horth N (eds) Ecological genomics. Advances in experimental medicine and biology. Springer, Dordrecht, pp 191–210. doi:10.1007/978-94-007-7347-9_10

    Chapter  Google Scholar 

  41. Kinoshita T, Jacobsen SE (2012) Opening the door to epigenetics in PCP. Plant Cell Physiol 53:763–765. doi:10.1093/pcp/pcs061

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Koenig D, Weigel D (2015) Beyond the thale: comparative genomics and genetics of Arabidopsis relatives. Nat Rev Genet 16:285–298. doi:10.1038/nrg3883

    CAS  Article  PubMed  Google Scholar 

  43. Kronholm I, Collins SS (2016) Epigenetic mutations can both help and hinder adaptive evolution. Mol Ecol 25:1856–1868. doi:10.1111/mec.13296

    CAS  Article  PubMed  Google Scholar 

  44. Lang-Mladek C, Popova O, Kiok K et al (2010) Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol Plant 3:594–602. doi:10.1093/mp/ssq014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220. doi:10.1038/nrg2719

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Luna E, Bruce TJA, Roberts MR et al (2012) Next-generation systemic acquired resistance. Plant Physiol 158:844–853. doi:10.1104/pp.111.187468

    CAS  Article  PubMed  Google Scholar 

  47. Mauch-Mani B, Baccelli I, Luna E, Flors V (2017) Defense priming: an adaptive part of induced resistance. Annu Rev Plant Biol 68:485–512. doi:10.1146/annurev-arplant-042916-041132

    CAS  Article  PubMed  Google Scholar 

  48. Medrano M, Herrera CM, Bazaga P (2014) Epigenetic variation predicts regional and local intraspecific functional diversity in a perennial herb. Mol Ecol 23:4926–4938. doi:10.1111/mec.12911

    CAS  Article  PubMed  Google Scholar 

  49. Niederhuth CE, Bewick AJ, Ji L et al (2016) Widespread natural variation of DNA methylation within angiosperms. Genome Biol 17:194. doi:10.1186/s13059-016-1059-0

    Article  PubMed  PubMed Central  Google Scholar 

  50. Quadrana L, Colot V (2016) Plant transgenerational epigenetics. Annu Rev Genet 50:467–491. doi:10.1146/annurev-genet-120215-035254

    CAS  Article  PubMed  Google Scholar 

  51. Ramírez-Carrasco G, Martínez-Aguilar K, Alvarez-Venegas R (2017) Transgenerational defense priming for crop protection against plant pathogens: a hypothesis. Front Plant Sci 8:1–8. doi:10.3389/fpls.2017.00696

    Article  Google Scholar 

  52. Rasmann S, De Vos M, Casteel CL et al (2012) Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol 158:854–863. doi:10.1104/pp.111.187831

    CAS  Article  PubMed  Google Scholar 

  53. Rendina González AP, Chrtek J, Dobrev PI et al (2016) Stress-induced memory alters growth of clonal offspring of white clover (Trifolium repens). Am J Bot 103:1567–1574. doi:10.3732/ajb.1500526

    Article  Google Scholar 

  54. Richards EJ (2011) Natural epigenetic variation in plant species: a view from the field. Curr Opin Plant Biol 14:204–209. doi:10.1016/j.pbi.2011.03.009

    CAS  Article  PubMed  Google Scholar 

  55. Richards CL, Bossdorf O, Verhoeven KJF (2010) Understanding natural epigenetic variation. New Phytol 187:562–564. doi:10.1111/j.1469-8137.2010.03369.x

    Article  PubMed  Google Scholar 

  56. Richards CL, Alonso C, Becker C et al (2017) Ecological plant epigenetics: evidence from model and non-model species, and the way forward. bioRxiv 5905:doi:10.1101/130708

  57. Sahu PP, Pandey G, Sharma N et al (2013) Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep 32:1151–1159. doi:10.1007/s00299-013-1462-x

    CAS  Article  PubMed  Google Scholar 

  58. Schrey AW, Alvarez M, Foust CM et al (2013) Ecological epigenetics: beyond MS-AFLP. Integr Comp Biol 53:340–350. doi:10.1093/icb/ict012

    Article  PubMed  Google Scholar 

  59. Schulz B, Eckstein RL, Durka W (2014) Epigenetic variation reflects dynamic habitat conditions in a rare floodplain herb. Mol Ecol 23:3523–3537. doi:10.1111/mec.12835

    Article  PubMed  Google Scholar 

  60. Seymour DK, Koenig D, Hagmann J et al (2014) Evolution of DNA methylation patterns in the Brassicaceae is driven by differences in genome organization. PLoS Genet 10:e1004785. doi:10.1371/journal.pgen.1004785

    Article  PubMed  PubMed Central  Google Scholar 

  61. Slaughter A, Daniel X, Flors V et al (2012) Descendants of primed arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843. doi:10.1104/pp.111.191593

    CAS  Article  PubMed  Google Scholar 

  62. Takuno S, Ran J-H, Gaut BS (2016) Evolutionary patterns of genic DNA methylation vary across land plants. Nat Plants 2:15222. doi:10.1038/nplants.2015.222

    CAS  Article  PubMed  Google Scholar 

  63. Trucchi E, Mazzarella AB, Gilfillan GD et al (2016) BsRADseq: screening DNA methylation in natural populations of non-model species. Mol Ecol 25:1697–1713. doi:10.1111/mec.13550

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. van Gurp TP, Wagemaker NCAM, Wouters B et al (2016) epiGBS: reference-free reduced representation bisulfite sequencing. Nat Methods 13:322–324. doi:10.1038/nmeth.3763

    Article  PubMed  Google Scholar 

  65. van der Graaf A, Wardenaar R, Neumann DA et al (2015) Rate, spectrum, and evolutionary dynamics of spontaneous epimutations. Proc Natl Acad Sci USA 112:6676–6681. doi:10.1073/pnas.1424254112

    Article  PubMed  PubMed Central  Google Scholar 

  66. Vanyushin BF, Belozersky AN (1959) Nucleotide composition of deoxyribonucleic acid in higher plants. Dokl Akad Nauk SSSR 129:944–946

    CAS  Google Scholar 

  67. Verhoeven KJF, VonHoldt BM, Sork VL (2016) Epigenetics in ecology and evolution: what we know and what we need to know. Mol Ecol 25:1631–1638. doi:10.1111/mec.13617

    Article  PubMed  Google Scholar 

  68. Viggiano L, Pinto MC De (2017) Dynamic DNA methylation patterns in stress response. In: Rajewsky N, Jurga S, Barciszewski J (eds) Plant epigenetics. Springer, Cham, pp 281–302. doi:10.1007/978-3-319-55520-1_15

    Chapter  Google Scholar 

  69. Weinhold A, Kallenbach M, Baldwin IT (2013) Progressive 35S promoter methylation increases rapidly during vegetative development in transgenic Nicotiana attenuata plants. BMC Plant Biol 13:99. doi:10.1186/1471-2229-13-99

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Wibowo A, Becker C, Marconi G et al (2016) Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. Elife. doi:10.7554/eLife.13546

    PubMed  PubMed Central  Google Scholar 

  71. Wilschut RA, Oplaat C, Snoek LB et al (2016) Natural epigenetic variation contributes to heritable flowering divergence in a widespread asexual dandelion lineage. Mol Ecol 25:1759–1768. doi:10.1111/mec.13502

    CAS  Article  PubMed  Google Scholar 

  72. Wyatt GR (1950) Occurrence of 5-methyl-cytosine in nucleic acids. Nature 166:237–238. doi:10.1038/166237b0

    CAS  Article  PubMed  Google Scholar 

  73. Zilberman D (2008) The evolving functions of DNA methylation. Curr Opin Plant Biol 11:554–559. doi:10.1016/j.pbi.2008.07.004

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the DFG via the Collaborative Research Centre 973 ‘Priming and Memory of Organismic Responses to Stress’.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arne Weinhold.

Additional information

Communicated by Tarek Hewezi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weinhold, A. Transgenerational stress-adaption: an opportunity for ecological epigenetics. Plant Cell Rep 37, 3–9 (2018). https://doi.org/10.1007/s00299-017-2216-y

Download citation

Keywords

  • Cytosine methylation
  • Transgenerational stress-adaption
  • Epigenetic priming