Skip to main content
Log in

An endoplasmic reticulum-localized Coffea arabica BURP domain-containing protein affects the response of transgenic Arabidopsis plants to diverse abiotic stresses

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The Coffea arabica BURP domain-containing gene plays an important role in the response of transgenic Arabidopsis plants to abiotic stresses via regulating the level of diverse proteins.

Abstract

Although the functions of plant-specific BURP domain-containing proteins (BDP) have been determined for a few plants, their roles in the growth, development, and stress responses of most plant species, including coffee plant (Coffea arabica), are largely unknown. In this study, the function of a C. arabica BDP, designated CaBDP1, was investigated in transgenic Arabidopsis plants. The expression of CaBDP1 was highly modulated in coffee plants subjected to drought, cold, salt, or ABA. Confocal analysis of CaBDP1-GFP fusion proteins revealed that CaBDP1 is localized in the endoplasmic reticulum. The ectopic expression of CaBDP1 in Arabidopsis resulted in delayed germination of the transgenic plants under abiotic stress and in the presence of ABA. Cotyledon greening and seedling growth of the transgenic plants were inhibited in the presence of ABA due to the upregulation of ABA signaling-related genes like ABI3, ABI4, and ABI5. Proteome analysis revealed that the levels of several proteins are modulated in CaBDP1-expressing transgenic plants. The results of this study underscore the importance of BURP domain proteins in plant responses to diverse abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albertos P, Romero-Puertas MC, Tatematsu K, Mateos I, Sanchez-Vicente I, Nambara E et al (2015) S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth. Nat Commun 6:8669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barsalobres-Cavallari CF, Severino FE, Maluf MP, Maia IG (2009) Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Mol Biol 10:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Batchelor AK, Boutilier K, Miller SS, Hattori J, Bowman LA, Hu M et al (2002) SCB1, a BURP-domain protein gene, from developing soybean seed coats. Planta 215:523–532

    Article  CAS  PubMed  Google Scholar 

  • Batista-Santos P, Lidon FC, Fortunato A, Leitao AE, Lopes E, Partelli F (2011) The impact of cold on photosynthesis in genotypes of Coffea spp.—photosystem sensitivity, photoprotective mechanisms and gene expression. J Plant Physiol 168:792–806

    Article  CAS  PubMed  Google Scholar 

  • Baumlein H, Boerjan W, Nagy I, Bassuner R, Van Montagu M, Inze D et al (1991) A novel seed protein gene from Vicia faba is developmentally regulated in transgenic tobacco and Arabidopsis plants. Mol Gen Genet 225:459–467

    Article  CAS  PubMed  Google Scholar 

  • Bechtold N, Pelletier G (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol 82:259–266

    CAS  PubMed  Google Scholar 

  • Boutilier KA, Gines MJ, DeMoor JM, Huang B, Baszczynski CL, Lyer VN et al (1994) Expression of the BnmNAP subfamily of napin genes coincides with the induction of Brassica microspore embryogenesis. Plant Mol Biol 26:1711–1723

    Article  CAS  PubMed  Google Scholar 

  • Chang GG, Tong L (2003) Structure and function of malic enzymes, a new class of oxidative decarboxylases. Biochemistry 42:12721–12733

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Brandizzi F (2013) Analysis of unfolded protein response in Arabidopsis. Methods Mol Biol 1043:73–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi MJ, Park YR, Park SJ, Kang H (2015) Stress-responsive expression patterns and functional characterization of cold shock domain proteins in cabbage (Brassica rapa) under abiotic stress conditions. Plant Physiol Biochem 96:132–140

    Article  CAS  PubMed  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  PubMed  Google Scholar 

  • DaMatta FM, Ramalho JDC (2006) Impacts of drought and temperature stress on coffee physiology and production. Brazi J Plant Physiol 18:55–81

    Article  CAS  Google Scholar 

  • Ding X, Hou X, Xie K, Xiong L (2009) Genome-wide identification of BURP domain-containing genes in rice reveals a gene family with diverse structures and responses to abiotic stresses. Planta 230:149–163

    Article  CAS  PubMed  Google Scholar 

  • Feng CZ, Chen Y, Wang C, Kong YH, Wu WH, Chen YF (2014) Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development. Plant J 80:654–668

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein R (2013) Abscisic acid synthesis and response. Arabidopsis Book 11:e0166

    Article  PubMed  PubMed Central  Google Scholar 

  • Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10:1043–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentes D, Meneses M, Nunes-Nesi A, Araújo WL, Tapia R, Gómez I et al (2011) A deficiency in the flavoprotein of Arabidopsis mitochondrial complex II results in elevated photosynthesis and better growth in nitrogen-limiting conditions. Plant Physiol 157:1114–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara T, Nambara E, Yamagishi K, Goto DB, Naito S (2002) Storage protein. Arabidopsis Book 1:e0020

    Article  PubMed  PubMed Central  Google Scholar 

  • Galka MM, Rajagopalan N, Buhrow LM, Nelson KM, Switala J, Cutler AJ et al (2015) Identification of interactions between abscisic acid and ribulose-1,5-bisphosphate carboxylase/oxygenase. PLoS ONE 10:e0133033

    Article  PubMed  PubMed Central  Google Scholar 

  • Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4:1251–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu L, Jung HJ, Kwak KJ, Nguyen Dinh S, Kim YO, Kang H (2016) An RRM-containing mei2-like MCT1 plays a negative role in the seed germination and seedling growth of Arabidopsis thaliana in the presence of ABA. Plant Physiol Biochem 109:273–279

    Article  CAS  PubMed  Google Scholar 

  • Guzzo SD, Harakava R, Tsai SM (2009) Identification of coffee genes expressed during systemic acquired resistance and incompatible with Hemileia vastatrix. J Phytopathol 157:625–638

    Article  CAS  Google Scholar 

  • Harshavardhan VT, Van Son L, Seiler C, Junker A, Weigelt-Fischer K, Klukas C et al (2014) AtRD22 and AtUSPL1, members of the plant-specific BURP domain family involved in Arabidopsis thaliana drought tolerance. PLoS ONE 9:e110065

    Article  PubMed  PubMed Central  Google Scholar 

  • Hattori J, Boutilier KA, van Lookeren CMM, Miki BL (1998) A conserved BURP domain defines a novel group of plant proteins with unusual primary structures. Mol Gen Genet 259:424–428

    Article  CAS  PubMed  Google Scholar 

  • ICO Annual Review 2012/13. ISSN 1473-3331, 1-36

  • Jiang T, Zhang XF, Wang XF, Zhang DP (2011) Arabidopsis 3-ketoacyl-coa thiolase-2 (KAT2), an enzyme of fatty acid β-oxidation, is involved in ABA signal transduction. Plant Cell Physiol 52:528–538

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Kim H, Go YS, Lee SB, Hur CG, Kim HU et al (2011) Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents. Plant Cell Rep 30:1881–1892

    Article  CAS  PubMed  Google Scholar 

  • Jung HJ, Kim MK, Kang H (2013) An ABA-regulated putative RNA-binding protein affects seed germination of Arabidopsis under ABA or abiotic stress conditions. J Plant Physiol 170:179–184

    Article  CAS  PubMed  Google Scholar 

  • Kang BS, Baek JH, Macoy DM, Chakraborty R, Cha J-Y, Hwang D-Y et al (2015) N-glycosylation process in both ER and Golgi plays pivotal role in plant immunity. J Plant Biol 58:374–382

    Article  CAS  Google Scholar 

  • Kim YO, Kang H (2006) The role of a zinc finger-containing glycine rich RNA-binding protein during the cold adaptation process in Arabidopsis thaliana. Plant Cell Physiol 47:793–798

    Article  PubMed  Google Scholar 

  • Kim YO, Pan O, Jung CH, Kang H (2007) A zinc finger-containing glycine-rich RNA-binding protein, AtRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions. Plant Cell Physiol 48:1170–1181

    Article  CAS  PubMed  Google Scholar 

  • Kramer D, Breitenstein B, Kleinwächter M, Selmar D (2010) Stress metabolism in green coffee bean (Coffea arabica L.): expression of dehydrins and accumulation of GABA during drying. Plant Cell Physiol 5:546–553

    Article  Google Scholar 

  • Laporte MM, Shen B, Tarczynski MC (2002) Engineering for drought avoidance: expression of maize NADP-malic enzyme in tobacco results in altered stomatal function. J Exp Bot 53:699–705

    Article  CAS  PubMed  Google Scholar 

  • Lee JJ, Woodward AW, Chen ZJ (2007) Gene expression changes and early events in cotton fibre development. Ann Bot 100:1391–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Molina L, Chua NH (2000) A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana. Plant Cell Physiol 41:541–547

    Article  CAS  PubMed  Google Scholar 

  • Marraccini P, Freire LP, Alves GSC, Vieira NG, Vinecky F, Elbelt S et al (2011) RBCS1 expression in coffee: coffea orthologs, Coffea arabica homeologs, and expression variability between genotypes and under drought stress. BMC Plant Biol 11:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matus JT, Aquea F, Espinoza C, Vega A, Cavallini E, Santo SD et al (2014) Inspection of the grapevine BURP superfamily highlights an expansion of RD22 genes with distinctive expression features in berry development and ABA-mediated stress responses. PLoS ONE 9:e110372

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra MK, Slater A (2012) Recent advances in the genetic transformation of coffee. Biotechnol Res Internat 2012:580857

    Article  CAS  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen Dinh S, Sai TZT, Nawaz G, Lee K, Kang H (2016) Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa). J Plant Physiol 201:85–94

    Article  CAS  PubMed  Google Scholar 

  • Parcy F, Valon C, Raynal M, Gaubier-Comella P, Deleseny M, Giraudat J (1994) Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 61:1567–1582

    Article  Google Scholar 

  • Park J, Cui Y, Kang BH (2015) AtPGL3 is an Arabidopsis BURP domain protein that is localized to the cell wall and promotes cell enlargement. Frontier Plant Sci 6:412

    Google Scholar 

  • Partelli FL, Vieira HD, Viana AP, Batista-Santos P, Rodrigues AP, Leião AE et al (2009) Low temperature impact on photosynthetic parameters in coffee genotypes. Pesq Agropec Brasília 44:1404–1415

    Article  Google Scholar 

  • Pattison RJ, Amtmann A (2009) N-glycan production in the endoplasmic reticulum of plants. Trends Plant Sci 14:92–99

    Article  CAS  PubMed  Google Scholar 

  • Reeves WM, Lynch TJ, Mobin R, Finkelstein RR (2011) Direct targets of the transcription factors ABA-Insensitive (ABI4 and ABI5) reveal synergistic action by ABI4 and several bZIP ABA response factors. Plant Mol Biol 75:347–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos AB, Mazzafera P (2012) Dehydrins are highly expressed in water-stressed plants of two coffee species. Tropical Plant Biol 5:218–232

    Article  CAS  Google Scholar 

  • Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Cao Y, Qiu J, Gao Z, Ou Z, Wang Y et al (2014) Expression of a vacuole-localized BURP-domain protein from soybean (SALI3-2) enhances tolerance to cadmium and copper stresses. PLoS ONE 9:e98830

    Article  PubMed  PubMed Central  Google Scholar 

  • Teerawanichpan P, Xia Q, Caldwell SJ, Datla R, Selvaraj G (2009) Protein storage vacuoles of Brassica napus zygotic embryos accumulate a BURP domain protein and perturbation of its production distorts the PSV. Plant Mol Biol 71:331–343

    Article  CAS  PubMed  Google Scholar 

  • Treacy BK, Hattori J, Prudhomme I, Barbour E, Boutilier K, Baszczynski CL et al (1997) Bnm1, a Brassica pollen-specific gene. Plant Mol Biol 34:603–611

    Article  CAS  PubMed  Google Scholar 

  • Van Son L, Tiedemann J, Rutten T, Hillmer S, Hinz G, Zank T et al (2009) The BURP domain protein AtUSPL1 of Arabidopsis thaliana is destined to the protein storage vacuoles and overexpression of the cognate gene distorts seed development. Plant Mol Biol 71:319–329

    Article  CAS  PubMed  Google Scholar 

  • Vitale A, Denecke J (1999) The endoplasmic reticulum-gateway to the secretory pathway. Plant Cell 11:615–628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vitale A, Ceriotti A, Denecke J (1993) The role of the endoplasmic reticulum in protein synthesis, modification and intracellular transport. J Exp Bot 44:1417–1444

    Article  CAS  Google Scholar 

  • Wang HM, Zhou L, Fu YP, Cheung MY, Wong FL, Phang TH et al (2012) Expression of an apoplast-localized BURP-domain protein from soybean (GmRD22) enhances tolerance towards abiotic stress. Plant, Cell Environ 35:1932–1947

    Article  CAS  Google Scholar 

  • Watson CF, Zheng L, DellaPenna D (1994) Reduction of tomato polygalacturonase beta subunit expression affects pectin solubilization and degradation during fruit ripening. Plant Cell 6:1623–1634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Li Y, Yan Y, Wang K, Gao Y, Hu Y (2010) Genome scale identification of soybean BURP domain-containing genes and their expression under stress treatments. BMC Plant Biol 10:197

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu ZY, Lee KH, Dong T, Jeong JC, Jin JB, Kanno Y et al (2012) A vacuolar β-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis. Plant Cell 24:2184–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu T, Gu L, Choi MJ, Kim RJ, Suh MC, Kang H (2014a) Comparative functional analysis of wheat (Triticum aestivum) zinc finger-containing glycine-rich RNA-binding proteins in response to abiotic stresses. PLoS ONE 9:e96877

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu T, Sy ND, Lee HJ, Kwak KJ, Gu L, Kim JI et al (2014b) Functional characterization of a chloroplast-targeted RNA-binding protein CRP1 in Arabidopsis thaliana under abiotic stress conditions. J Plant Biol 57:349–356

    Article  CAS  Google Scholar 

  • Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Heupel RC, DellaPenna D (1992) The β-subunit of tomato fruit polygalacturonase isoenzyme 1: isolation, characterization, and identification of unique structural features. Plant Cell 4:1147–1156

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Jung-Hyun Lee for technical assistance to grow coffee plants in a green house. This work was supported by a grant from the Next-Generation BioGreen21 Program (PJ01103601), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hunseung Kang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Communicated by Dr. Youn-Il Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, S.N., Kang, H. An endoplasmic reticulum-localized Coffea arabica BURP domain-containing protein affects the response of transgenic Arabidopsis plants to diverse abiotic stresses. Plant Cell Rep 36, 1829–1839 (2017). https://doi.org/10.1007/s00299-017-2197-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-017-2197-x

Keywords

Navigation