Skip to main content
Log in

Genetic dissection of adventitious shoot regeneration in roses by employing genome-wide association studies

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key Message

We analysed the capacity to regenerate adventitious shoots in 96 rose genotypes and found 88 SNP markers associated with QTLs, some of which are derived from candidate genes for shoot regeneration.

Abstract

In an association panel of 96 rose genotypes previously analysed for petal colour, we conducted a genome-wide association study on the capacity of leaf petioles for direct shoot regeneration. Shoot regeneration rate and shoot ratio (number of shoots/total number of explants) were used as phenotypic descriptors for regeneration capacity. Two independent experiments were carried out with six replicates of ten explants each. We found significant variation between the genotypes ranging from 0.88 to 88.33% for the regeneration rate and from 0.008 to 1.2 for the shoot ratio, which exceeded the rates reported so far. Furthermore, we found 88 SNP markers associated with either the shoot regeneration rate or the shoot ratio. In this association analysis, we found 12 SNP markers from ESTs (expressed sequence tags) matching known candidate genes that are involved in shoot morphogenesis. The best markers explained more than 51% of the variance in the shoot regeneration rate and more than 0.65 of the variance in the shoot regeneration ratio between the homozygote marker classes. The genes underlying some of the best markers such as a GT-transcription factor or an LRR receptor-like protein kinase are novel candidate genes putatively involved in the observed phenotypic differences. The associated markers were mapped to the closely related genome of Fragaria vesca and revealed many distinct clusters, which also comprised the known candidate genes that functioned in the organogenesis of plant shoots. However, the validation of candidate genes and their functional relationship to shoot regeneration require further analysis in independent rose populations and functional analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamowski M, Friml J (2015) PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27(1):20–32. doi:10.1105/tpc.114.134874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Afshar MH, Kermani MJ, Khalighi A, Habashi AA, Mohammadi A (2011) Direct shoot regeneration on three cultivars of Rosa hybrida using five explant types and different hormone concentrations. Am Eurasian J Agric Environ Sci 10(6):962–967

    CAS  Google Scholar 

  • Afzal AJ, Wood AJ, Lightfoot DA (2008) Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol Plant Microbe Interact 21(5):507–517. doi:10.1094/MPMI-21-5-0507

    Article  CAS  PubMed  Google Scholar 

  • Bao Y, Liu G, Shi X, Xing W, Ning G, Liu J, Bao M (2012) Primary and repetitive secondary somatic embryogenesis in Rosa hybrida ‘Samantha’. Plant Cell Tiss Organ Cult 109(3):411–418. doi:10.1007/s11240-011-0105-6

    Article  CAS  Google Scholar 

  • Barr MS, Willmann MR, Jenik PD (2012) Is there a role for trihelix transcription factors in embryo maturation? Plant Signal Behav 7(2):205–209. doi:10.4161/psb.18893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635. doi:10.1093/bioinformatics/btm308

    Article  CAS  PubMed  Google Scholar 

  • Cao K, Wang L, Zhu G, Fang W, Chen C, Luo J (2012) Genetic diversity, linkage disequilibrium, and association mapping analyses of peach (Prunus persica) landraces in China. Tree Genet Genomes 8(5):975–990. doi:10.1007/s11295-012-0477-8

    Article  Google Scholar 

  • Debener T, Linde M (2009) Exploring complex ornamental genomes: the rose as a model plant. Crit Rev Plant Sci 28:267–280

    Article  CAS  Google Scholar 

  • Debener T, Oyant LH-S (2009) Genetic engineering and tissue culture of roses. In: Folta KM, Gardiner SE (eds) Genetics and genomics of rosaceae. Springer, New York, pp 393–409

    Chapter  Google Scholar 

  • Dubois LAM, Dubois DPX, Koot A (2000) Direct shoot regeneration in the Rose: genetic variation of cultivars. Gartenbauwissenschaft 65(ISSN 0016–478X), pp 45–49

  • Farahani F (2012) Propagation and growth from cultured single node explants of rosa (Rosa miniature). Afr J Plant Sci. doi:10.5897/AJPS12.037

    Google Scholar 

  • Florez SL, Erwin RL, Maximova SN, Guiltinan MJ, Curtis WR (2015) Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. BMC Plant Biol 15:121. doi:10.1186/s12870-015-0479-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Fougere-Danezan M, Joly S, Bruneau A, Gao X-F, Zhang L-B (2015) Phylogeny and biogeography of wild roses with specific attention to polyploids. Ann Bot 115(2):275–291. doi:10.1093/aob/mcu245

    Article  PubMed  Google Scholar 

  • Gar O, Sargent DJ, Tsai C-J, Pleban T, Shalev G, Byrne DH, Zamir D (2011) An autotetraploid linkage map of rose (Rosa hybrida) validated using the strawberry (Fragaria vesca) genome sequence. PLoS ONE 6(5):e20463. doi:10.1371/journal.pone.0020463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George AW, Cavanagh C (2015) Genome-wide association mapping in plants. Theor Appl Genet 128(6):1163–1174. doi:10.1007/s00122-015-2497-x

    Article  CAS  PubMed  Google Scholar 

  • Gil P, Dewey E, Friml J, Zhao Y, Snowden KC, Putterill J, Palme K, Estelle M, Chory J (2001) BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Genes Dev 15(15):1985–1997. doi:10.1101/gad.905201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gitonga VW, Koning-Boucoiran CFS, Verlinden K, Dolstra O, Visser RGF, Maliepaard C, Krens FA (2014) Genetic variation, heritability and genotype by environment interaction of morphological traits in a tetraploid rose population. BMC Genet 15:146. doi:10.1186/s12863-014-0146-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Gliwicka M, Nowak K, Balazadeh S, Mueller-Roeber B, Gaj MD (2013) Extensive modulation of the transcription factor transcriptome during somatic embryogenesis in Arabidopsis thaliana. PLoS ONE 8(7):e69261. doi:10.1371/journal.pone.0069261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haerizadeh F, Wong CE, Singh MB, Bhalla PL (2009) Genome-wide analysis of gene expression in soybean shoot apical meristem. Plant Mol Biol 69(6):711–727. doi:10.1007/s11103-008-9450-1

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hardy OJ, Vekemans X (2002) Spagedi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2(4):618–620. doi:10.1046/j.1471-8286.2002.00305.x

    Article  Google Scholar 

  • Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt ED, Boutilier K, Grossniklaus U, de Vries SC (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127(3):803–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedden P, Thomas SG (2016) Annual plant reviews, volume 49: DELLA proteins: master regulators of Gibberellin responsive growth and development. Wiley, Chichester

    Google Scholar 

  • Henz A, Debener T, Linde M (2016) Identification of major stable QTLs for flower color in roses. Mol Breed 35:190. doi:10.1007/s11032-015-0382-6

    Article  Google Scholar 

  • Hibrand-Saint Oyant L, Crespel L, Rajapakse S, Zhang L, Foucher F (2007) Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits. Tree Genet Genomes 4(1):11–23. doi:10.1007/s11295-007-0084-2

    Article  Google Scholar 

  • Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang Q-F, Li J, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42(11):961–967. doi:10.1038/ng.695

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim R, Debergh PC (2001) Factors controlling high efficiency adventitious bud formation and plant regeneration from in vitro leaf explants of roses (Rosa hybrida L.). Sci Hortic 88(1):41–57. doi:10.1016/S0304-4238(00)00189-8

    Article  Google Scholar 

  • Ikeda M, Ohme-Takagi M (2014) TCPs, WUSs, and WINDs: families of transcription factors that regulate shoot meristem formation, stem cell maintenance, and somatic cell differentiation. Front Plant Sci 5:427. doi:10.3389/fpls.2014.00427

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishida T, Tabata R, Yamada M, Aida M, Mitsumasu K, Fujiwara M, Yamaguchi K, Shigenobu S, Higuchi M, Tsuji H, Shimamoto K, Hasebe M, Fukuda H, Sawa S (2014) Heterotrimeric G proteins control stem cell proliferation through CLAVATA signaling in Arabidopsis. EMBO Rep 15(11):1202–1209. doi:10.15252/embr.201438660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwase A, Mita K, Nonaka S, Ikeuchi M, Koizuka C, Ohnuma M, Ezura H, Imamura J, Sugimoto K (2015) WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed. J Plant Res 128(3):389–397. doi:10.1007/s10265-015-0714-y

    Article  CAS  PubMed  Google Scholar 

  • Iwase A, Harashima H, Ikeuchi M, Rymen B, Ohnuma M, Komaki S, Morohashi K, Kurata T, Nakata M, Ohme-Takagi M, Grotewold E, Sugimoto K (2016) WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis. Plant Cell. doi:10.1105/tpc.16.00623

    PubMed  PubMed Central  Google Scholar 

  • Jang H-R, Lee H-J, Shohael AM, Park B-J, Paek K-Y, Park S-Y (2016) Production of biomass and bioactive compounds from shoot cultures of Rosa rugosa using a bioreactor culture system. Hortic Environ Biotechnol 57(1):79–87. doi:10.1007/s13580-016-0111-z

    Article  CAS  Google Scholar 

  • Kadam S, Vuong TD, Qiu D, Meinhardt CG, Song L, Deshmukh R, Patil G, Wan J, Valliyodan B, Scaboo AM, Shannon JG, Nguyen HT (2016) Genomic-assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding. Plant Sci 242:342–350. doi:10.1016/j.plantsci.2015.08.015

    Article  CAS  PubMed  Google Scholar 

  • Kaplan-Levy RN, Brewer PB, Quon T, Smyth DR (2012) The trihelix family of transcription factors–light, stress and development. Trends Plant Sci 17(3):163–171. doi:10.1016/j.tplants.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  • Kawamura K, Hibrand-Saint Oyant L, Crespel L, Thouroude T, Lalanne D, Foucher F (2011) Quantitative trait loci for flowering time and inflorescence architecture in rose. TAG. Theoretical and applied genetics. 122(4):661–675. doi:10.1007/s00122-010-1476-5

    Article  PubMed  Google Scholar 

  • Kawamura K, Hibrand-Saint Oyant L, Thouroude T, Jeauffre J, Foucher F (2015) Inheritance of garden rose architecture and its association with flowering behaviour. Tree Genet Genomes 11(2):1–2. doi:10.1007/s11295-015-0844-3

    Article  Google Scholar 

  • Koning-Boucoiran CFS, Esselink GD, Vukosavljev M, van ‘t Westende WPC, Gitonga VW, Krens FA, Voorrips RE, van de Weg WE, Schulz D, Debener T, Maliepaard C, Maliepaard C, Arens P, Smulders MJM (2015) Using RNA-Seq to assemble a rose transcriptome with more than 13,000 full-length expressed genes and to develop the WagRhSNP 68 k Axiom SNP array for rose (Rosa L.). Front Plant Sci 6(249):249. doi:10.3389/fpls.2015.00249

    PubMed  PubMed Central  Google Scholar 

  • Kwon S-J, Brown AF, Hu J, McGee R, Watt C, Kisha T, Timmerman-Vaughan G, Grusak M, McPhee KE, Coyne CJ (2012) Genetic diversity, population structure and genome-wide marker–trait association analysis emphasizing seed nutrients of the USDA pea (Pisum sativum L.) core collection. Genes Genom 34(3):305–320. doi:10.1007/s13258-011-0213-z

    Article  CAS  Google Scholar 

  • Kwon S, Simko I, Hellier B, Mou B, Hu J (2013) Genome-wide association of 10 horticultural traits with expressed sequence tag-derived SNP markers in a collection of lettuce lines. The Crop J 1(1):25–33. doi:10.1016/j.cj.2013.07.014

    Article  Google Scholar 

  • Lall S, Nettleton D, DeCook R, Che P, Howell SH (2004) Quantitative trait loci associated with adventitious shoot formation in tissue culture and the program of shoot development in Arabidopsis. Genetics 167(4):1883–1892. doi:10.1534/genetics.103.025213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane WD, Iketani H, Hayashi T (1998) Shoot regeneration from cultured leaves of Japanese pear (Pyrus pyrifolia). Plant Cell Tissue Organ Cult 54(1):9–14. doi:10.1023/A:1006032707849

    Article  Google Scholar 

  • Li X, Krasnyanski SF, Korban SS (2002) Optimization of the uidA gene transfer into somatic embryos of rose via Agrobacterium tumefaciens. Plant Physiol Biochem 40(5):453–459. doi:10.1016/S0981-9428(02)01394-3

    Article  CAS  Google Scholar 

  • Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/ethylene responsive factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199(3):639–649. doi:10.1111/nph.12291

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Yang X, Zhang D, Bai G, Chao S, Bockus W (2014) Genome-wide association analysis identified SNPs closely linked to a gene resistant to Soil-borne wheat mosaic virus. Theor Appl Genet 127(5):1039–1047. doi:10.1007/s00122-014-2277-z

    Article  CAS  PubMed  Google Scholar 

  • Long NV, Dolstra O, Malosetti M, Kilian B, Graner A, Visser RGF, van der Linden CG (2013) Association mapping of salt tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 126(9):2335–2351. doi:10.1007/s00122-013-2139-0

    Article  CAS  PubMed  Google Scholar 

  • Morton NE (2005) Linkage disequilibrium maps and association mapping. J Clin Invest 115(6):1425–1430. doi:10.1172/JCI25032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motte H, Vercauteren A, Depuydt S, Landschoot S, Geelen D, Werbrouck S, Goormachtig S, Vuylsteke M, Vereecke D (2014a) Combining linkage and association mapping identifies RECEPTOR-LIKE PROTEIN KINASE1 as an essential Arabidopsis shoot regeneration gene. Proc Natl Acad Sci USA 111(22):8305–8310. doi:10.1073/pnas.1404978111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motte H, Vereecke D, Geelen D, Werbrouck S (2014b) The molecular path to in vitro shoot regeneration. Biotechnol Adv 32(1):107–121. doi:10.1016/j.biotechadv.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  • Neelakandan AK, Wang K (2012) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 31(4):597–620. doi:10.1007/s00299-011-1202-z

    Article  CAS  PubMed  Google Scholar 

  • Nordborg M, Weigel D (2008) Next-generation genetics in plants. Nature 456(7223):720–723. doi:10.1038/nature07629

    Article  CAS  PubMed  Google Scholar 

  • Pati PK, Sharma M, Sood A, Ahuja PS (2004) Direct shoot regeneration from leaf explants of Rosa damascena Mill. Vitro Cell Dev Biol Plant 40(2):192–195. doi:10.1079/IVP2003503

    Article  Google Scholar 

  • Pati PK, Sharma M, Sood A, Ahuja PS (2005) Micropropagation of Rosa damascena and R. bourboniana in liquid cultures. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Dordrecht, pp 373–385

    Chapter  Google Scholar 

  • Pati PK, Rath SP, Sharma M, Sood A, Ahuja PS (2006) In vitro propagation of rose–a review. Biotechnol Adv 24(1):94–114. doi:10.1016/j.biotechadv.2005.07.001

    Article  CAS  PubMed  Google Scholar 

  • Pourhosseini L, Kermani MJ, Habashi AA, Khalighi A (2013) Efficiency of direct and indirect shoot organogenesis in different genotypes of Rosa hybrida. Plant Cell Tiss Organ Cult 112(1):101–108. doi:10.1007/s11240-012-0210-1

    Article  CAS  Google Scholar 

  • Pritchard JK, Matthew S, Donnelly Peter (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roman H, Rapicault M, Miclot AS, Larenaudie M, Kawamura K, Thouroude T, Chastellier A, Lemarquand A, Dupuis F, Foucher F, Loustau S, Hibrand-Saint Oyant L (2015) Genetic analysis of the flowering date and number of petals in rose. Tree Genet Genomes 11(4):85. doi:10.1007/s11295-015-0906-6

    Article  Google Scholar 

  • Rostami H, Giri A, Nejad ASM, Moslem A (2013) Optimization of multiple shoot induction and plant regeneration in Indian barley (Hordeum vulgare) cultivars using mature embryos. Saudi J Biol Sci 20(3):251–255. doi:10.1016/j.sjbs.2013.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggieri V, Francese G, Sacco A, D’Alessandro A, Rigano MM, Parisi M, Milone M, Cardi T, Mennella G, Barone A (2014) An association mapping approach to identify favourable alleles for tomato fruit quality breeding. BMC Plant Biol 14:337. doi:10.1186/s12870-014-0337-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Rupps A, Raschke J, Rummler M, Linke B, Zoglauer K (2016) Identification of putative homologs of Larix decidua to BABYBOOM (BBM), LEAFY COTYLEDON1 (LEC1), WUSCHEL-related HOMEOBOX2 (WOX2) and SOMATIC EMBRYOGENESIS RECEPTOR-like KINASE (SERK) during somatic embryogenesis. Planta 243(2):473–488. doi:10.1007/s00425-015-2409-y

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Mori H, Hattori K (2007) Synergistic effect of kinetin and benzyl adenine plays a vital role in high frequency regeneration from Cotyledon explants of Bottle Gourd (Lagenaria siceraria) in relation to ethylene production. Breed Sci 57(3):197–202. doi:10.1270/jsbbs.57.197

    Article  CAS  Google Scholar 

  • Schmidt ED, Guzzo F, Toonen MA, de Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124(10):2049–2062

    CAS  PubMed  Google Scholar 

  • Schulz DF, Schott RT, Voorrips RE, Smulders MJM, Linde M, Debener T (2016) Genome-wide association analysis of the anthocyanin and carotenoid contents of Rose petals. Front Plant Sci 7:1798. doi:10.3389/fpls.2016.01798

    Article  PubMed  PubMed Central  Google Scholar 

  • Seo M-S, Jin M, Lee S-S, Kwon S-J, Mun J-H, Park B-S, Visser RGF, Bonnema G, Sohn S-H (2013) Mapping quantitative trait loci for tissue culture response in VCS3M-DH population of Brassica rapa. Plant Cell Rep 32(8):1251–1261. doi:10.1007/s00299-013-1433-2

    Article  CAS  PubMed  Google Scholar 

  • Shemer O, Landau U, Candela H, Zemach A, Eshed Williams L (2015) Competency for shoot regeneration from Arabidopsis root explants is regulated by DNA methylation. Plant Sci 238:251–261. doi:10.1016/j.plantsci.2015.06.015

    Article  CAS  PubMed  Google Scholar 

  • Shirasawa K, Fukuoka H, Matsunaga H, Kobayashi Y, Kobayashi I, Hirakawa H, Isobe S, Tabata S (2013) Genome-wide association studies using single nucleotide polymorphism markers developed by re-sequencing of the genomes of cultivated tomato. DNA Res 20(6):593–603. doi:10.1093/dnares/dst033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talapatra S, Ghoshal N, Raychaudhuri SS (2014) Molecular characterization, modeling and expression analysis of a somatic embryogenesis receptor kinase (SERK) gene in Momordica charantia L. during somatic embryogenesis. Plant Cell Tiss Organ Cult 116(3):271–283. doi:10.1007/s11240-013-0401-4

    Article  CAS  Google Scholar 

  • Trujillo-Moya C, Gisbert C, Vilanova S, Nuez F (2011) Localization of QTLs for in vitro plant regeneration in tomato. BMC Plant Biol 11:140. doi:10.1186/1471-2229-11-140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Salm TPM, van der Toorn CJG, ten Cate CHH, Dubois LAM, de Vries DP, Dons HJM (1994) Importance of the iron chelate formula for micropropagation of Rosa hybrida L. ‘Moneyway’. Plant Cell Tiss Organ Cult 37(1):73–77. doi:10.1007/BF00048120

    Article  Google Scholar 

  • Vergne P, Maene M, Gabant G, Chauvet A, Debener T, Bendahmane M (2010) Somatic embryogenesis and transformation of the diploid Rosa chinensis cv Old Blush. Plant Cell Tiss Organ Cult 100(1):73–81. doi:10.1007/s11240-009-9621-z

    Article  Google Scholar 

  • Vukosavljev M, Arens P, Voorrips RE, van ‘t Westende WP, Esselink GD, Bourke PM, Cox P, van de Weg WE, Visser RG, Maliepaard C, Smulders MJ (2016) High-density SNP-based genetic maps for the parents of an outcrossed and a selfed tetraploid garden rose cross, inferred from admixed progeny using the 68 k rose SNP array. Hortic Res 3:16052. doi:10.1038/hortres.2016.52

    Article  PubMed  PubMed Central  Google Scholar 

  • Weigel D, Nordborg M (2015) Population genomics for understanding adaptation in wild plant species. Annu Rev Genet 49:315–338. doi:10.1146/annurev-genet-120213-092110

    Article  CAS  PubMed  Google Scholar 

  • Xing W, Bao M, Qin H, Ning G (2010) Micropropagation of Rosa rugosa through axillary shoot proliferation. Acta Biol Cracoviensia Ser Bot 52(2):69–75. doi:10.2478/v10182-010-0025-5

    Google Scholar 

  • Xu L, Huang H (2014) Genetic and epigenetic controls of plant regeneration. Curr Top Dev Biol 108:1–33. doi:10.1016/B978-0-12-391498-9.00009-7

    Article  PubMed  Google Scholar 

  • Xu J, Zhang S (2015) Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci 20(1):56–64. doi:10.1016/j.tplants.2014.10.001

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Zhao T, Yu D, Gai J (2011) Mapping QTLs for tissue culture response in soybean (Glycine max (L.) Merr.). Mol Cells 32(4):337–342. doi:10.1007/s10059-011-0063-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HF, Kou YP, Gao B, Soliman TMA, Xu KD, Ma N, Cao X, Zhao LJ (2014) Identification and functional analysis of BABY BOOM genes from Rosa canina. Biol Plant 58(3):427–435. doi:10.1007/s10535-014-0420-y

    Article  CAS  Google Scholar 

  • Yang C, Ma Y, Li J (2016) The rice YABBY4 gene regulates plant growth and development through modulating the gibberellin pathway. J Exp Bot 67(18):5545–5556. doi:10.1093/jxb/erw319

    Article  CAS  PubMed  Google Scholar 

  • Yao Y-X, Sun Y-W, Li G-G, Li G-H (2014) Regeneration of plants from in vitro culture of petioles in Prunus Domestica Lindl (European Plum). Biotechnol Biotechnol Equip 25(3):2458–2463. doi:10.5504/BBEQ.2011.0056

    Article  Google Scholar 

  • Zakizadeh H, Stummann BM, Lütken H, Müller R (2010) Isolation and characterization of four somatic embryogenesis receptor-like kinase (RhSERK) genes from miniature potted rose (Rosa hybrida cv. Linda). Plant Cell Tiss Organ Cult 101(3):331–338. doi:10.1007/s11240-010-9693-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was carried out in part with financial support from the Vietnamese Government and Department of Molecular Plant Breeding, Institute of Plant Genetics, Leibniz Universität, Hannover, Germany. We would like to thank Klaus Dreier and the gardeners from the Department of Molecular Plant Breeding for assistance and the Federal Plant Variety Office for providing greenhouse facilities in Hannover. We thank Dr. Frank Schaarschmidt from the Institute of Biostatistics, Leibniz Universität, Hannover, Germany, for help with the statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Debener.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Dr. Xian Sheng Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.H.N., Schulz, D., Winkelmann, T. et al. Genetic dissection of adventitious shoot regeneration in roses by employing genome-wide association studies. Plant Cell Rep 36, 1493–1505 (2017). https://doi.org/10.1007/s00299-017-2170-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-017-2170-8

Keywords

Navigation