Abstract
Key message
GmSN1 enhances virus resistance in plants most likely by affecting the expression of signal transduction and immune response genes.
Abstract
Soybean mosaic virus (SMV) infection causes severe symptom and leads to massive yield loss in soybean (Glycine max). By comparative analyzing gene expression in the SMV-resistant soybean cultivar Rsmv1 and the susceptible cultivar Ssmv1 at a transcriptome level, we found that a subgroup of Gibberellic Acid Stimulated Transcript (GAST) genes were down-regulated in SMV inoculated Ssmv1 plants, but not Rsmv1 plants. Sequence alignment and phylogenetic analysis indicated that one of the GAST genes, GmSN1, was closely related to Snakin-1, a well-characterized potato microbial disease resistance gene. When over-expressed in Arabidopsis and soybean, respectively, under the control of the 35S promoter, GmSN1 enhanced turnip mosaic virus resistance in the transgenic Arabidopsis plants, and SMV resistance in the transgenic soybean plants, respectively. Transcriptome analysis results showed that the up-regulated genes in the 35S:GmSN1 transgenic Arabidopsis plants were largely enriched in functional terms including “signal transduction” and “immune response”. Real-time PCR assay indicated that the expression of GmAKT2, a potassium channel gene known to enhance SMV resistance when over-expressed in soybean, was elevated in the 35S:GmSN1 transgenic soybean plants. Taken together, our results suggest that GmSN1 enhances virus resistance in plants most likely by affecting the expression of signal transduction and immune response genes.
This is a preview of subscription content, access via your institution.







References
Almasia NI, Bazzini AA, Hopp HE, Vazquez-Rovere C (2008) Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants. Mol Plant Pathol 9:329–338. doi:10.1111/j.1364-3703.2008.00469.x
Ascencio-Ibáñez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, Hanley-Bowdoin L (2008) Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol 148:436–454. doi:10.1104/pp.108.121038
Aubert D, Chevillard M, Dorne AM, Arlaud G, Herzog M (1998) Expression patterns of GASA genes in Arabidopsis thaliana: the GASA4 gene is up-regulated by gibberellins in meristematic regions. Plant Mol Biol 36:871–883. doi:10.1023/A:1005938624418
Babu M, Gagarinova AG, Brandle JE, Wang A (2008) Association of the transcriptional response of soybean plants with soybean mosaic virus systemic infection. J Gen Virol 89:1069–1080. doi:10.1099/vir.0.83531-0
Balaji V, Smart CD (2011) Over-expression of snakin-2 and extensin-like protein genes restricts pathogen invasiveness and enhances tolerance to Clavibacter michiganensis subsp. michiganensis in transgenic tomato (Solanum lycopersicum). Transgenic Res 21:23–37. doi:10.1007/s11248-011-9506-x
Ben-Nissan G, Lee JY, Boroho A, Weiss D (2004) GIP, a Petunia hybrida GA-induced cysteine-rich protein: a possible role in shoot elongation and transition to flowering. Plant J 37:229–238. doi:10.1046/j.1365-313X.2003.01950.x
Berrocal-Lobo M, Segura A, Moreno M, López G, García-olmedo F, Molina A (2002) Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol 128:951–961. doi:10.1104/pp.010685
Buzzell RI, Tu JC (1989) Inheritance of a soybean stem-tip necrosis reaction to soybean mosaic virus. J Hered 80:400–401. doi:10.1093/oxfordjournals.jhered.a110882
Chen P, Ma G, Buss GR, Gunduz I, Roane CW, Tolin SA (2001) Inheritance and allelism tests of Raiden soybean for resistance to soybean mosaic virus. J Hered 92:51–55. doi:10.1093/jhered/92.1.51
Cho EK, Goodman RM (1982) Evaluation of resistance in soybeans to soybean mosaic virus strains. Crop Sci 22:1133–1136. doi:10.2135/cropsci1982.0011183X002200060012x
Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi:10.1046/j.1365-313x.1998.00343.x
Cui X, Chen X, Wang A (2011) Detection, understanding and control of Soybean mosaic virus. In: Sudaric A (ed) Soybean-molecular aspects of breeding. InTech, Shanghai, pp 335–354. doi:10.5772/14298
Fu S, Zhan Y, Zhi H, Gai J, Yu D (2006) Mapping of SMV resistance gene Rsc-7 by SSR markers in soybean. Genetica 128:63–69. doi:10.1007/s10709-005-5535-9
Furukawa T, Sakaguchi N, Shimada H (2006) Two OsGASR genes, rice GAST homologue genes that are abundant in proliferating tissues, show different expression patterns in developing panicles. Genes Genet Syst 81:171–180. doi:10.1266/ggs.81.171
García AN, Ayub ND, Fox AR, Gómez MC, Diéguez MJ, Pagano EM, Berini CA, Muschietti JP, Soto G (2014) Alfalfa snakin-1 prevents fungal colonization and probably coevolved with rhizobia. BMC Plant Biol 14:1–13. doi:10.1186/s12870-014-0248-9
García-Olmedo F, Molina A, Alamillo JM, Rodríguez-Palenzuéla P (1998) Plant defense peptides. Biopolymers 47:479–491. doi:10.1002/(SICI)1097-0282
Gardner NW, Kendrick JB (1921) Soybean mosaic. J Agric Res 22:0111–0113
Golem S, Culver JN (2003) Tobacco mosaic virus induced alterations in the gene expression profile of Arabidopsis thaliana. Mol Plant Microbe Interact 16:681–688. doi:10.1094/MPMI.2003.16.8.681
Gore MA, Hayes AJ, Jeong SC, Yue YG, Buss GR, Saghai Maroof MA (2002) Mapping tightly linked genes controlling potyvirus infection at the Rsv1 and Rpv1 region in soybean. Genome 45:592–599. doi:10.1139/g02-009
Green SK, Deng TC (1985) Turnip mosaic virus strains in cruciferous hosts in Taiwan. Plant Dis 69:28–31. doi:10.1094/PD-69-28
Gunduz I, Buss GR, Chen P, Tolin SA (2002) Characterization of SMV resistance genes in Tousan 140 and Hourei soybean. Crop Sci 42:90–95. doi:10.2135/cropsci2002.0090
Hayes AJ, Ma G, Buss GR, Saghai Maroof MA (2000) Molecular marker mapping of Rsv4, a gene conferring resistance to all known strains of soybean mosaic virus. Crop Sci 40:1434–1437. doi:10.2135/cropsci2000.4051434x
Hu R, Fan C, Li H, Zhang Q, Fu Y (2009) Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol 10:93. doi:10.1186/1471-2199-10-93
Hwang TY, Moon JK, Yu S, Yang K, Mohankumar S, Yu YH, Lee YH, Kim HS, Kim HM, Saghai Maroof MA, Jeong SC (2006) Application of comparative genomics in developing molecular markers tightly linked to the virus resistance gene Rsv4 in soybean. Genome 49:380–388. doi:10.1139/g05-111
Jeong SC, Kristipati S, Hayes AJ, Maughan PJ, Noffsinger SL, Gunduz I, Buss GR, Saghai Maroof MA (2002) Genetic and sequence analysis of markers tightly linked to the soybean mosaic virus resistance gene, Rsv3. Crop Sci 42:265–270
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. doi:10.1093/molbev/msw054
Li H, Zhi H, Gai J, Guo D, Wang Y, Li K, Bai L, Yang H (2006) Inheritance and gene mapping of resistance to soybean mosaic virus strain SC14 in soybean. J Integr Plant Biol 48:1466–1472. doi:10.1111/j.1744-7909.2006.00365.x
Li K, Yang QH, Zhi HJ, Gai JY (2010) Identification and distribution of soybean mosaic virus strains in Southern China. Plant Dis 94:351–357. doi:10.1094/PDIS-94-3-0351
Li K, Bai X, Li Y, Cai H, Ji W, Tang L, Wen Y, Zhu Y (2011) GsGASA1 mediated root growth inhibition in response to chronic cold stress is marked by the accumulation of DELLAs. J Plant Physiol 168:2153–2160. doi:10.1016/j.jplph.2011.07.006
Liao L, Chen P, Buss GR, Yang Q, Tolin SA (2002) Inheritance and allelism of resistance to soybean mosaic virus in Zao18 soybean from China. J Hered 93:447–452
Liu ZH, Zhu L, Hai-Yan Shi HY, Chen Y, Zhang JM, Zheng Y (2013) Li XB (2013) Cotton GASL genes encoding putative gibberellin-regulated proteins are involved in response to GA signaling in fiber development. Mol Biol Rep 40:4561–4570. doi:10.1007/s11033-013-2543-1
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408. doi:10.1006/meth.2001.1262
Ma G, Chen P, Buss GR, Tolin SA (1995) Genetic characteristics of two genes for resistance to soybean mosaic virus in PI486355 soybean. Theor Appl Genet 91:907–914. doi:10.1007/BF00223899
Meiyalaghan S, Thomson SJ, Fiers MW, Barrell PJ, Latimer JM, Mohan S, Jones EE, Conner AJ, Jeanne ME, Jacobs JM (2014) Structure and expression of GSL1 and GSL2 genes encoding gibberellin stimulated-like proteins in diploid and highly heterozygous tetraploid potato reveals their highly conserved and essential status. BMC Genom 15:1–16. doi:10.1186/1471-2164-15-2
Muroi A, Ishihara A, Tanaka C, Ishizuka A, Takabayashi J, Miyoshi H, Nishioka T (2009) Accumulation of hydroxycinnamic acid amides induced by pathogen infection and identification of agmatine coumaroyltransferase in Arabidopsis thaliana. Planta 230:517–527. doi:10.1007/s00425-009-0960-0
Nahirñak V, Almasia NI, Hopp HE, Vazquezrovere C (2012) Snakin/GASA proteins: involvement in hormone crosstalk and redox homeostasis. Plant Signal Behav 7:1004–1008. doi:10.4161/psb.20813
Paz MM, Shou H, Guo Z, Zhang Z, Banerjee AK, Wang K (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explants. Euphytica 136:167–179. doi:10.1016/S0168-7972(00)80013-4
Porto WF, Franco OL (2013) Theoretical structural insights into the snakin/GASA family. Peptides 44:163–167. doi:10.1016/j.peptides.2013.03.014
Saghai Maroof MA, Tucker DM, Skoneczka JA, Bowman BC, Tripathy S, Tolin SA (2010) Fine mapping and candidate gene discovery of the soybean mosaic virus resistance gene, Rsv4. Plant Genome US 3:14–22. doi:10.3835/plantgenome2009.07.0020
Segura A, Moreno M, Madueño F, Molina A, Garcíaolmedo F (1999) Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant Microbe Interact 12:16–23. doi:10.1094/MPMI.1999.12.1.16
Shi L, Gast RT, Gopalraj M, Olszewski NE (1992) Characterization of a shoot-specific, GA3- and ABA-regulated gene from tomato. Plant J 2:153–159. doi:10.1111/j.1365-313X.1992.00153.x
Shi A, Chen P, Li D, Zheng C, Hou A, Zhang B (2008) Genetic confirmation of 2 independent genes for resistance to soybean mosaic virus in J05 soybean using SSR markers. J Hered 99:598–603. doi:10.1093/jhered/esn035
Suh SJ, Bowman BC, Jeong N, Yang K, Kastl C, Tolin SA, Saghai Maroof MA, Jeong SC (2011) The Rsv3 locus conferring resistance to soybean mosaic virus is associated with a cluster of coiled-coil nucleotide-binding leucine-rich repeat genes. Plant Genome 4:55–64. doi:10.3835/plantgenome2010.11.0024
Walsh JA, Jenner CE (2002) Turnip mosaic virus and the quest for durable resistance. Mol Plant Pathol 3:289–300. doi:10.1046/j.1364-3703.2002.00132.x
Wang D, Ma Y, Yang Y, Liu N, Li C, Song Y, Zhi H (2010) Fine mapping and analyses of R SC 8 resistance candidate genes to soybean mosaic virus in soybean. Theor Appl Genet 122:555–565. doi:10.1007/s00122-010-1469-4
Wang D, Ma Y, Liu N, Yang Z, Zheng G, Zhi H (2011) Fine mapping and identification of the soybean RSC4 resistance candidate gene to soybean mosaic virus. Plant Breed 130:653–659. doi:10.1111/j.1439-0523.2011.01888.x
Whitham SA, Quan S, Chang HS, Cooper B, Estes B, Zhu T et al (2003) Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis plants. Plant J 33:271–283. doi:10.1046/j.1365-313X.2003.01625.x
Whitham SA, Yang C, Goodin MM (2006) Global impact: elucidating plant responses to viral infection. Mol Plant Microbe Interact 19:1207–1215. doi:10.1094/MPMI-19-1207
Wrzaczek M, Brosché M, Salojärvi J, Kangasjärvi S, Idänheimo N, Mersmann S, Robatzek S, Karpiński S, Karpińska B, Kangasjärvi J (2010) Transcriptional regulation of the CRK/DUF 26 group of receptor-like protein kinases by ozone and plant hormones in arabidopsis. BMC Plant Biol 10(1):1–19. doi:10.1186/1471-2229-10-95
Yang Q, Gai J (2011) Identification, inheritance and gene mapping of resistance to a virulent soybean mosaic virus strain SC15 in soybean. Plant Breed 130:128–132. doi:10.1111/j.1439-0523.2010.01797.x
Yang C, Guo R, Jie F, Nettleton D, Peng J, Carr T, Yeakley J, Fan J, Whitham SA (2007) Spatial analysis of Arabidopsis thaliana gene expression in response to turnip mosaic virus infection. Mol Plant Microbe Interact 20:358–370. doi:10.1094/MPMI-20-4-035
Yang Y, Zheng G, Han L, Wang D, Yang X, Yuan Y, Huang S, Zhi H (2013) Genetic analysis and mapping of genes for resistance to multiple strains of soybean mosaic virus in a single resistant soybean accession PI 96983. Theor Appl Genet 126:1783–1791. doi:10.1007/s00122-013-2092-y
Zheng C, Chen P, Gergerich R (2006) Genetic analysis of resistance to soybean mosaic virus in J05 soybean. J Hered 97:429–437. doi:10.1093/jhered/esl024
Zhou L, He H, Liu R, Han Q, Shou H, Liu B (2014) Overexpression of GmAKT2 potassium channel enhances resistance to soybean mosaic virus. BMC Plant Biol 14:154. doi:10.1186/1471-2229-14-154
Zhu S, Gao F, Cao X, Chen M, Ye G, Wei C, Li Y (2005) The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. Plant Physiol 139:1935–1945. doi:10.1104/pp.105.072306
Zimmermann R, Sakai H, Hochholdinger F (2010) The gibberellic acid stimulated-like gene family in maize and its role in lateral root development. Plant Physiol 152:356–365. doi:10.1104/pp.109.149054
Acknowledgements
We thank Dr. Yuming Wang (Jilin Academy of Agricultural Sciences) for providing seeds the soybean strains, and Dr. Wei Qian (The Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences) for turnip mosaic virus strain C4. This work was supported by the Ministry of Agriculture of China (2016ZX08004004-002) and the National Key Program for Research and Development (2016YFD0101902). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Additional information
Communicated by Dr. Eugenio Benvenuto.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
He, H., Yang, X., Xun, H. et al. Over-expression of GmSN1 enhances virus resistance in Arabidopsis and soybean. Plant Cell Rep 36, 1441–1455 (2017). https://doi.org/10.1007/s00299-017-2167-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00299-017-2167-3
Keywords
- GmAKT2
- Transcriptome analysis
- Gibberellic acid stimulated transcript (GAST)
- Soybean mosaic virus (SMV)
- Turnip mosaic virus (TuMV)