Plant Cell Reports

, Volume 36, Issue 8, pp 1287–1296 | Cite as

Overexpression of the nitrate transporter, OsNRT2.3b, improves rice phosphorus uptake and translocation

  • Huimin Feng
  • Bin Li
  • Yang Zhi
  • Jingguang Chen
  • Ran Li
  • Xiudong Xia
  • Guohua Xu
  • Xiaorong Fan
Original Article

Abstract

Key message

Overexpression ofOsNRT2.3bin rice can increase Pi uptake and accumulation through advanced root system, enhancedOsPTandOsPHRgenes expression, and the phloem pH homeostasis.

Abstract

Nitrogen (N) and phosphorus (P) are two essential macronutrients for plants. Overexpression of the rice nitrate transporter, OsNRT2.3b, can improve rice grain yield and nitrogen use efficiency (NUE). Here, OsNRT2.3b overexpression resulted in increased grain yield, straw yield, and grain:straw ratio, accompanied by increased P concentrations in the leaf blade, leaf sheath, culm, and unfilled rice hulls. Overexpression of OsNRT2.3b significantly increased 33Pi uptake compared with WT under 300-μM Pi but not 10-μM Pi condition in 24 h. Moreover, the OsNRT2.3b-overexpressing rice lines showed increased root and shoot biomass, root:shoot ratio, total root length root surface area and N, P accumulation under 300- and 10-μM Pi supply in hydroponic solution. The levels of OsPT2, OsPT8, and OsPHR2 expression in roots and of OsPT1 and OsPHR2 in shoots were upregulated in OsNRT2.3b-overexpressing rice. These results indicated that OsNRT2.3b overexpression can improve rice P uptake and accumulation, partially through the advanced root system, enhanced gene expression, and the phloem pH regulation function.

Keywords

OsNRT2.3b P uptake P accumulation Rice 

Supplementary material

299_2017_2153_MOESM1_ESM.docx (594 kb)
Supplementary material 1 (DOCX 594 kb)

References

  1. Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller AJ, Xu G (2009) Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J 57:798–809CrossRefPubMedGoogle Scholar
  2. Bieleski RL (1973) Phosphate pools, phosphate transport, and phosphate availability. Plant Biol 24:225–252Google Scholar
  3. Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–45CrossRefGoogle Scholar
  4. Bryla DR, Koide RT (1998) Mycorrhizal response of two tomato genotypes relates to their ability to acquire and utilize phosphorus. Ann Bot 82:849–857CrossRefGoogle Scholar
  5. Cai J, Chen L, Qu H, Lian J, Liu W, Hu Y, Xu G (2012) Alteration of nutrient allocation and transporter genes expression in rice under N, P, K, and Mg deficiencies. Acta Physiol Plant 34(3):939–946CrossRefGoogle Scholar
  6. Cai H, Xie W, Lian X (2013) Comparative analysis of differentially expressed genes in rice under nitrogen and phosphorus starvation stress conditions. Plant Mol Biol Rep 31(1):160–173CrossRefGoogle Scholar
  7. Catarecha P, Segura MD, Franco-ZorrillaJM García-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007) A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19(3):1123–1133CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen AQ, Hu J, Sun SB, Xu GH (2007) Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species. New Phytol 173:817–831CrossRefPubMedGoogle Scholar
  9. Chen G, Feng H, Hu Q, Qu H, Chen A, Yu L, Xu GH (2015) Improving rice tolerance to potassium deficiency by enhancing OsHAK16p:WOX11-controlled root development. Plant Biotechnol J 13(6):833–848CrossRefPubMedGoogle Scholar
  10. Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, Lian X, Shen Q, Miller AJ, Xu G (2016) Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proc Natl Acad Sci USA 113(26):7118–7123CrossRefPubMedPubMedCentralGoogle Scholar
  11. Forde B, Lorenzo H (2001) The nutritional control of root development. Plant Soil 232:51–68CrossRefGoogle Scholar
  12. Franco-Zorrilla JM, Gonzalez E, Bustos R, Linhares F, Leyva A, PazAres J (2004) The transcriptional control of plant responses to phosphate limation. J Exp Bot 55:285–293CrossRefPubMedGoogle Scholar
  13. Glassop D, Smith SE, Smith FW (2005) Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222:688–698CrossRefPubMedGoogle Scholar
  14. Güimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci USA 102(22):8066–8070CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–617CrossRefPubMedGoogle Scholar
  16. Hühn M (1993) Comparison of harvest index and grain/straw-ratio with applications to winter oilseed rape. J Agron Crop Sci 170(4):270–280CrossRefGoogle Scholar
  17. Jia H, Ren H, Gu M, Zhao J, Sun S, Zhang X, Chen J, Wu P, Xu G (2011) The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. Plant Physiol 156(3):1164–1175CrossRefPubMedPubMedCentralGoogle Scholar
  18. Konvalina P, Stehno Z, Capouchová I, Zechner E, Berger S, Grausgruber H, Janovská D, MoudrýSr J (2014) Differences in grain/straw ratio, protein content and yield in landraces and modern varieties of different wheat species under organic farming. Euphytica 199(1):31–40CrossRefGoogle Scholar
  19. Liu Y, Mi GH, Chen FJ, Zhang JH, Zhang FS (2004) Rhizosphere effect and root growth of two maize (Zea mays L.) genotupes with contrasting P efficiency at low P availability. Plant Sci 167(2):217–223CrossRefGoogle Scholar
  20. Liu F, Wang Z, Ren H, Shen C, Li Y, Ling HQ, Wu C, Lian X, Wu P (2010) OsSPX1 suppresses the function of OsPHR2 in the regulation of expression of OsPT2 and phosphate homeostasis in shoots of rice. Plant J 62(3):508–517CrossRefPubMedGoogle Scholar
  21. López-Bucio J, Cruz-RamíRez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6(3):280–287CrossRefPubMedGoogle Scholar
  22. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, LondonGoogle Scholar
  23. Misson J, Thibaud MC, Bechtold N, Raghothama K, Nussaume L (2004) Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. Plant Mol Biol 55:727–741CrossRefPubMedGoogle Scholar
  24. Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 99:13324–13329CrossRefPubMedPubMedCentralGoogle Scholar
  25. Raghothama KG, Karthikeyan AS (2005) Phosphate acquisition. Plant Soil 274:37–49CrossRefGoogle Scholar
  26. Robertson GP, Vitousek PM (2009) Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Environ Resour 34:97–125CrossRefGoogle Scholar
  27. Rubio V, Linhares F, Solano R, Martín AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev 15:2122–2133CrossRefPubMedPubMedCentralGoogle Scholar
  28. Schachtman DP, Shin R (2007) Nutrient sensing and signaling: NPKS. Annu Rev Plant Physiol 58:47–69Google Scholar
  29. Shin H, Shin HS, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642CrossRefPubMedGoogle Scholar
  30. Sun S, Gu M, Cao Y, Huang X, Zhang X, Ai P, Zhao J, Fan X, Xu G (2012) A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice. Plant Physiol 159:1571–1581CrossRefPubMedPubMedCentralGoogle Scholar
  31. Tang Z, Fan X, Li Q, Feng H, Miller AJ, Shen Q, Xu G (2012) Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. Plant Physiol 160:2052–2063CrossRefPubMedPubMedCentralGoogle Scholar
  32. Wang C, Ying S, Huang H, Li K, Wu P, Shou H (2009) Involvement of OsSPX1 in phosphate homeostasis in rice. Plant J 57:895–904CrossRefPubMedGoogle Scholar
  33. Wang X, Wang Y, Piñeros MA, Wang Z, Wang W, Li C, Wu Z, Kochian LV, Wu P (2014) Phosphate transporters OsPHT1;9 and OsPHT1;10 are involved in phosphate uptake in rice. Plant Cell Environ 37:1159–1170CrossRefPubMedGoogle Scholar
  34. Wang H, Sun R, Cao Y, Pei W, Sun Y, Zhou H, Wu X, Zhang F, Luo L, Shen Q, Xu G, Sun S (2015) Ossiz1, a sumo e3 ligase gene, is involved in the regulation of the responses to phosphate and nitrogen in rice. Plant Cell Physiol 56(12):2381–2395CrossRefPubMedGoogle Scholar
  35. Wu P, Shou H, Xu G, Lian X (2013) Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis. Curr Opin Plant Biol 16:205–212CrossRefPubMedGoogle Scholar
  36. Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182CrossRefPubMedGoogle Scholar
  37. Yang XJ, Finnegan PM (2010) Regulation of phosphate starvation responses in higher plants. Ann Bot 105:513–526CrossRefPubMedPubMedCentralGoogle Scholar
  38. Zhang F, Sun Y, Pei W, Jain A, Sun R, Cao Y, Wu X, Jiang T, Zhang L, Fan X, Chen A, Shen Q, Xu G, Sun S (2015) Involvement of OsPht1;4 in phosphate acquisition and mobilization facilitates embryo development in rice. Plant J 82:556–569CrossRefPubMedGoogle Scholar
  39. Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146:1673–1686CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Huimin Feng
    • 1
  • Bin Li
    • 2
    • 3
  • Yang Zhi
    • 1
  • Jingguang Chen
    • 2
    • 3
  • Ran Li
    • 1
  • Xiudong Xia
    • 4
  • Guohua Xu
    • 2
    • 3
  • Xiaorong Fan
    • 2
    • 3
  1. 1.Jiangsu Key Lab of Marine Biology, College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
  2. 2.State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
  3. 3.Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of AgricultureNanjing Agricultural UniversityNanjingChina
  4. 4.Institute of Agro-Product ProcessingJiangsu Academy of Agricultural SciencesNanjingPeople’s Republic of China

Personalised recommendations