Skip to main content

Advertisement

Log in

PtrMYB57 contributes to the negative regulation of anthocyanin and proanthocyanidin biosynthesis in poplar

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Key message

A novel R2R3 MYB transcription factor PtrMYB57 interacted with bHLH131 and PtrTTG1 to form the MBW complex and negatively regulated the biosynthesis of both anthocyanins and PAs in poplar.

Abstract

R2R3-MYB transcription factors (TFs) are important regulators of secondary metabolite biosynthesis in woody species. A series of R2R3-MYB TFs involved in anthocyanin and proanthocyanidin (PA) biosynthesis have been identified in poplar. In this study, we report the identification and characterization of a subgroup 4 MYB member PtrMYB57, which contains a repressor domain (LxLxL) at the C-terminal end. PtrMYB57 encodes an R2R3 MYB protein localized in the nucleus and is predominantly expressed in mature leaves. Transgenic poplar overexpressing PtrMYB57 showed a reduction in anthocyanin and PA accumulation compared to wild-type plants. By contrast, a high anthocyanin and PA phenotype was observed in Ptrmyb57 mutants generated by the CRISPR/Cas9 system. Furthermore, transient expression assays revealed that PtrMYB57 interacted with bHLH131 (bHLH) and PtrTTG1 (WDR) to form the MBW complex and bound to the flavonoid gene promoters, leading to inhibition of these promoters. Taken together, our results suggest that PtrMYB57 plays a negative role in the regulation of anthocyanin and PA biosynthesis in poplar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrahams S, Lee E, Walker AR et al (2003) The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. Plant J 35(5):624–636

    Article  CAS  PubMed  Google Scholar 

  • Aharoni A, De Vos CH, Wein M (2001) The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J 28(3):319–332

    Article  CAS  PubMed  Google Scholar 

  • Albert NW (2015) Subspecialization of R2R3-MYB repressors for anthocyanin and proanthocyanidin regulation in Forage Legumes. Front Plant Sci 6:1165

    Article  PubMed  PubMed Central  Google Scholar 

  • Albert NW, Davies KM, Lewis DH et al (2014) A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell 26:962–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Gish W, Miller W (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • An XH, Tian Y, Chen KQ (2015) MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples. Plant Cell Physiol 56(4):650–662

    Article  CAS  PubMed  Google Scholar 

  • Barbehenn RV, Constabel CP (2011) Tannins in plant-herbivore interactions. Phytochemistry 72(13):1551–1565

    Article  CAS  PubMed  Google Scholar 

  • Baudry A, Heim MA, Dubreucq B et al (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39(3):366–380

    Article  CAS  PubMed  Google Scholar 

  • Bogs J, Jaffé FW, Takos AM (2007) The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol 143(3):1347–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borevitz JO, Xia Y, Blount J (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12(12):2383–2393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavallini E, Matus JT, Finezzo L (2015) The phenylpropanoid pathway is controlled at different branches by a set of R2R3-MYB C2 repressors in grapevine. Plant Physiol 167(4):1448–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Songkumarn P, Liu J (2009) A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiol 150(3):1111–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho JS, Nguyen VP, Jeon HW (2016) Overexpression of PtrMYB119, a R2R3-MYB transcription factor from Populus trichocarpa, promotes anthocyanin production in hybrid poplar. Tree Physiol 36(9):1162–1176

    Article  PubMed  Google Scholar 

  • Colquhoun TA, Kim JY, Wedde AE (2010) PhMYB4 fine-tunes the floral volatile signature of Petunia × hybrida through PhC4H. J Exp Bot 62(3):1133–1143

    Article  PubMed  PubMed Central  Google Scholar 

  • Cone KC, Burr FA, Burr B (1986) Molecular analysis of the maize anthocyanin regulatory locus C1. Proc Natl Acad Sci 83(24):9631–9635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cos P, De Bruyne T, Hermans N et al (2004) Proanthocyanidins in health care: current and new trends. Curr Med Chem 11(10):1345–1359

    Article  CAS  PubMed  Google Scholar 

  • Czemmel S, Stracke R, Weisshaar B (2009) The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol 151(3):1513–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies KM, Albert NW, Schwinn KE (2012) From landing lights to mimicry: the molecular regulation of flower colouration and mechanisms for pigmentation patterning. Funct Plant Biol 39(8):619–638

    Article  CAS  Google Scholar 

  • Deluc L, Barrieu F, Marchive C (2006) Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol 140(2):499–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deluc L, Bogs J, Walker AR (2008) The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiol 147(4):2041–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RA, Lamb CJ, Masoud S, Sewalt VJ, Paiva NL (1996) Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses—a review. Gene 179:61–71

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Xie DY, Sharma SB (2005) Proanthocyanidins—a final frontier in flavonoid research? New Phytol 165:9–28

    Article  CAS  PubMed  Google Scholar 

  • Engler C, Gruetzner R, Kandzia R (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4(5):e5553

    Article  PubMed  PubMed Central  Google Scholar 

  • Espley RV, Hellens RP, Putterill J (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49(3):414–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan D, Liu T (2015) Li C (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5:12217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fornalé S, Lopez E, Salazar-Henao JE (2014) AtMYB7, a new player in the regulation of UV-sunscreens in Arabidopsis thaliana. Plant Cell Physiol 55(3):507–516

    Article  PubMed  Google Scholar 

  • Gould KS, McKelvie J, Markham KR (2002) Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant, Cell Environ 25:1261–1269

    Article  CAS  Google Scholar 

  • Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    Article  CAS  PubMed  Google Scholar 

  • Huang YF, Vialet S, Guiraud JL et al (2014) A negative MYB regulator of proanthocyanidin accumulation, identified through expression quantitative locus mapping in the grape berry. New Phytol 201(3):795–809

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5(4):387–405

    Article  CAS  Google Scholar 

  • Jia Z, Gou J, Sun Y (2010) Enhanced resistance to fungal pathogens in transgenic Populus tomentosa Carr. by overexpression of an nsLTP-like antimicrobial protein gene from motherwort (Leonurus japonicus). Tree Physiol 30(12):1599–1605

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Cominelli E, Bailey P, Parr A (2000) Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J 19(22):6150–6161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagale S, Rozwadowski K (2011) EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression. Epigenetics 6(2):141–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagale S, Links MG, Rozwadowski K (2010) Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis. Plant Physiol 152(3):1109–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10(5):236–242

    Article  CAS  PubMed  Google Scholar 

  • Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, Meissner RC, Petroni K, Urzainqui A, Bevan M, Martin C et al (1998) Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J 16(2):263–276

    Article  CAS  PubMed  Google Scholar 

  • Kraus TEC, Yu Z, Preston CM et al (2003) Linking chemical reactivity and protein precipitation to structural characteristics of foliar tannins. J Chem Ecol 29(3):703–730

    Article  CAS  PubMed  Google Scholar 

  • Landi M, Guidi L, Pardossi A, Tattini M, Gould KS (2014) Photoprotection by foliar anthocyanins mitigates effects of boron toxicity in sweet basil (Ocimum basilicum). Planta 240(5):941–953

    Article  CAS  PubMed  Google Scholar 

  • Li YY, Mao K, Zhao C (2012) MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiol 160(2):1011–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin-Wang K, Bolitho K, Grafton K (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10(1):1

    Article  Google Scholar 

  • Ma X, Zhang Q, Zhu Q (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8(8):1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Marles MAS, Gruber MY, Scoles GJ, Muir AD (2003) Pigmentation in the developing seed coat and seedling leaves of Brassica carinata is controlled at the dihydroflavonol reductase locus. Phytochemistry 62(5):663–672

    Article  CAS  PubMed  Google Scholar 

  • Mellway RD, Tran LT, Prouse MB et al (2009) The wound-, pathogen-, and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar. Plant Physiol 150(2):924–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mol J, Grotewold E, Koes R (1998) How genes paint flowers and seeds. Trends Plant Sci 3(6):212–217

    Article  Google Scholar 

  • Nemie-Feyissa D, Olafsdottir SM, Heidari B, Lillo C (2014) Nitrogen depletion and small R3-MYB transcription factors affecting anthocyanin accumulation in Arabidopsis leaves. Phytochemistry 98:34–40

    Article  CAS  PubMed  Google Scholar 

  • Nesi N, Jond C, Debeaujon I (2001) The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13(9):2099–2114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pang YZ, Peel GJ, Wright E et al (2007) Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula. Plant Physiol 145(3):601–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paolocci F, Robbins MP, Passeri V (2010) The strawberry transcription factor FaMYB1 inhibits the biosynthesis of proanthocyanidins in Lotus corniculatus leaves. J Exp Bot 62(3):1189–1200

    Article  PubMed  Google Scholar 

  • Peters DJ, Constabel CP (2002) Molecular analysis of herbivore-induced condensed tannin synthesis: cloning and expression of dihydroflavonol reductase from trembling aspen (Populus tremuloides). Plant J 32(5):701–712

    Article  CAS  PubMed  Google Scholar 

  • Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15(1):8–15

    Article  CAS  Google Scholar 

  • Preston J, Wheeler J, Heazlewood J (2004) AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J 40(6):979–995

    Article  CAS  PubMed  Google Scholar 

  • Qin G, Ma Z, Zhang L (2007) Arabidopsis AtBECLIN1/AtAtg6/AtVps30 is essential for pollen germination and plant development. Cell Res 17(3):249–263

    CAS  PubMed  Google Scholar 

  • Quattrocchio F, Verweij W, Kroon A et al (2006) PH4 of petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell 18(5):1274–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabino I, Mancinelli AL (1986) Light, temperature, and anthocyanin production. Plant Physiol 81(3):922–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadowski I, Ma J, Triezenberg S (1988) GAL4-VP16 is an unusually potent transcriptional activator. Nature 335(6190):563–564

    Article  CAS  PubMed  Google Scholar 

  • Shirley BW, Kubasek WL, Storz G, Bruggemann E, Koornneef M, Ausubel FM, Goodman HM (1995) Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J 8:659–671

    Article  CAS  PubMed  Google Scholar 

  • Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025

    Article  CAS  PubMed  Google Scholar 

  • Takos AM, Jaffe FW et al (2006) Light induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142(3):1216–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamagnone L, Merida A, Parr A (1998) The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell 10(2):135–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S (2005) Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol 139:1840–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanderauwera S, Zimmermann P, Rombauts S (2005) Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol 139(2):806–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker AR, Lee E, Bogs J et al (2007) White grapes arose through mutation of two similar and adjacent regulatory genes. Plant J 49(5):772–785

    Article  CAS  PubMed  Google Scholar 

  • Weisshaar B, Jenkins GI (1998) Phenylpropanoid biosynthesis and its regulation. Curr Opini Plant Biol 1:251–257

    Article  CAS  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie DY, Sharma SB, Paiva NL et al (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299(5605):396–399

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Cai R, Cheng S et al (2008) Molecular cloning, characterization and expression of phenylalanine ammonialyase gene from Ginkgo biloba. Afr J Biotechnol 7(6):721–729

    Google Scholar 

  • Xu W, Grain D, Bobet S et al (2014) Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB–bHLH–WDR complexes and their targets in Arabidopsis seed. New Phytol 202:132–144

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Ma D, Constabel CP (2015) The MYB182 protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes. Plant Physiol 167(3):693–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan L, Wang L, Han Z, Jiang Y, Zhao L, Liu H, Yang L, Luo K (2012) Molecular cloning and characterization of PtrLAR3, a gene encoding leucoanthocyanidin reductase from Populus trichocarpa, and its constitutive expression enhances fungal resistance in transgenic plants. J Exp Bot 63:2513–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaragoza MV, Lewis LE, Sun G (2004) Identification of the TBX5 transactivating domain and the nuclear localization signal. Gene 330:9–18

    Article  CAS  PubMed  Google Scholar 

  • Zhu HF, Fitzsimmons K, Khandelwal A, Kranz RG (2009) CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis. Mol Plant 2:790–802

    Article  CAS  PubMed  Google Scholar 

  • Zhu QL, Yang ZF, Zhang QY (2014) Robust multi-type plasmid modifications based on isothermal in vitro recombination. Gene 548(1):39–42

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31370672, 31500216, and 31500544) and the “One Hundred Talents Program” of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keming Luo.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Communicated by Qiao Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 412 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, S., Li, C., Ma, X. et al. PtrMYB57 contributes to the negative regulation of anthocyanin and proanthocyanidin biosynthesis in poplar. Plant Cell Rep 36, 1263–1276 (2017). https://doi.org/10.1007/s00299-017-2151-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-017-2151-y

Keywords

Navigation