Plant Cell Reports

, Volume 36, Issue 9, pp 1345–1360 | Cite as

Recent developments in olive (Olea europaea L.) genetics and genomics: applications in taxonomy, varietal identification, traceability and breeding

  • L. SebastianiEmail author
  • M. Busconi


Key message

The latest results in DNA markers application and genomic studies in olive.


Olive (Olea europaea L.) is among the most ancient tree crops worldwide and the source of oil beneficial for human health. Despite this, few data on olive genetics are available in comparison with other cultivated plant species. Molecular information is mainly linked to molecular markers and their application to the study of DNA variation in the Olea europaea complex. In terms of genomic research, efforts have been made in sequencing, heralding the era of olive genomic. The present paper represents an update of a previous review work published in this journal in 2011. The review is again mainly focused on DNA markers, whose application still constitutes a relevant percentage of the most recently published researches. Since the olive genomic era has recently started, the latest results in this field are also being discussed.


Functional Genomics Germplasm Molecular Markers Olive Genome Olive Oil 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abdelhamid S, Grati-Kammoun N, Marra F, Caruso T (2013) Genetic similarity among Tunisian cultivated olive estimated through SSR markers. Sci Agr 70:33–38CrossRefGoogle Scholar
  2. Abdessemed S, Muzzalupo I, Benbouza H (2015) Assessment of genetic diversity among Algerian olive (Olea europaea L.) cultivars using SSR markers. Sci Hortic 192:10–20CrossRefGoogle Scholar
  3. Agrimonti C, Vietina M, Pafundo S, Marmiroli N (2011) The use of food genomics to ensure the traceability of olive oil. Trends Food Sci Tech 22:237–244CrossRefGoogle Scholar
  4. Alagna F, D’Agostino N, Torchia L et al (2009) Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genom 10:349–353CrossRefGoogle Scholar
  5. Alagna F, Mariotti R, Panara F et al (2012) Olive phenolic compounds: metabolic and transcriptional profiling during fruit development. BMC Plant Biol 12:162PubMedPubMedCentralCrossRefGoogle Scholar
  6. Alagna F, Geu-Flores F, Kries H et al (2016) Identification and characterization of the iridoid synthase involved in Oleuropein Biosynthesis in Olive (Olea europaea) fruits. J Biol Chem 291:5542–5554PubMedCrossRefGoogle Scholar
  7. Albertini E, Torricelli R, Bitocchi E et al (2011) Structure of genetic diversity in Olea europaea L. cultivars from central Italy. Mol Breed 27:533–547CrossRefGoogle Scholar
  8. Alborzian Deh Sheikh A, Moradnejad M (2014) Mutagenesis in olive (Olea europaea L.) calli caused by sodium azide and detection of mutants using ISSR and RAPD markers. J Hort Sci Biotech 89:153–158CrossRefGoogle Scholar
  9. Atienza SG, De la Rosa R, Leon L et al (2014) Identification of QTL for agronomic traits of importance for olive breeding. Mol Breed 34:725–737Google Scholar
  10. Awan AA, Zubair M, Iqbal A et al (2011) Molecular analysis of genetic diversity in olive cultivars. Afr J Agric Res 6:4937–4940Google Scholar
  11. Baldoni L, Belaj A (2009) Olive. In: Vollmann J, Rajean I (eds) Oil crops, handbook of plant breeding, vol 4. Springer Science + Business Media, Berlin, pp 397–421. doi: 10.1007/978-0-387-77594-4_13 Google Scholar
  12. Banilas G, Moressis A, Nikoloudakis N, Hatzopoulos P (2005) Spatial and temporal expressions of two distinct oleate desaturases from olive (Olea europaea L.). Plant Sci 168:547–555CrossRefGoogle Scholar
  13. Barazani O, Westberg E, Hanin N et al (2014) A comparative analysis of genetic variation in rootstocks and scions of old olive trees—a window into the history of olive cultivation practices and past genetic variation. BMC Plant Biol 14:146PubMedPubMedCentralCrossRefGoogle Scholar
  14. Barazzani O, Keren-Keiserman A, Westberg E et al (2016) Genetic variation of naturally growing olive trees in Israel: from abandoned groves to feral and wild? BMC Plant Biol 16:261CrossRefGoogle Scholar
  15. Barghini E, Natali L, Cossu RM et al (2014) The peculiar landscape of repetitive sequences in the olive (Olea europaea L.) genome. Genome Biol Evol 6:776–791PubMedPubMedCentralCrossRefGoogle Scholar
  16. Barghini E, Natali L, Giordani T et al (2015) LTR retrotransposon dynamics in the evolution of the olive (Olea europaea) genome. DNA Res 22:91–100PubMedCrossRefGoogle Scholar
  17. Barghini E, Mascagni F, Natali L et al (2016) Identification and characterisation of short interspersed nuclear elements in the Olive Tree (Olea Europaea L.) Genome. Mol Genet Genomics 292:53–61PubMedCrossRefGoogle Scholar
  18. Bartolini G (2008) Olea databases.
  19. Bazakos C, Dulger AO, Uncu AT et al (2012) A SNP-based PCR-RFLP capillary electrophoresis analysis for the identification of the varietal origin of olive oils. Food Chem 134:2411–2418PubMedCrossRefGoogle Scholar
  20. Bazakos C, Khanfir E, Aoun M et al (2016) The potential of SNP-based PCR-RFLP capillary electrophoresis analysis to authenticate and detect admixtures of Mediterranean olive oils. Electrophoresis 37:1881–1890PubMedCrossRefGoogle Scholar
  21. Beghè D, Molano JFG, Fabbri A, Ganino T (2015) Olive biodiversity in Colombia. A molecular study of local germplasm. Scientia Hortic 189:122–131CrossRefGoogle Scholar
  22. Beghè D, Piotti A, Satovic R et al (2017) Pollen-mediated gene flow and fine-scale spatial genetic structure in Olea europaea subsp. europaea var. sylvestris. Ann Bot 119:671–679PubMedGoogle Scholar
  23. Belaj A, León L, Satovic Z, De la Rosa R (2011) Variability of wild olives (Olea europaea subsp. europaea var. sylvestris) analyzed by agro-morphological traits and SSR markers. Scientia Hortic 129:561–569CrossRefGoogle Scholar
  24. Belaj A, Dominguez-García M, Atienza SG et al (2012) Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Gene Genom 8:365–378CrossRefGoogle Scholar
  25. Ben Ayed R, Ben Hassen H, Ennouri K et al (2016) OGDD (Olive Genetic Diversity Database): a microsatellite markers’ genotypes database of worldwide olive trees for cultivar identification and virgin olive oil traceability. Database. doi: 10.1093/database/bav090 PubMedPubMedCentralGoogle Scholar
  26. Ben Sadok I, Celton JM, Essalouh L et al (2013) QTL mapping of flowering and fruiting traits in olive. PLoS One 8:e62831PubMedCrossRefGoogle Scholar
  27. Ben-Ari G, Biton I, Mani Y et al (2014) The diversity in performance of commercial olive clones selected from the autochthonous cv. Souri population for intensive irrigated cultivation. HortSci 49:425–429Google Scholar
  28. Ben-Ayed R, Grati-Kammoun N, Sans-Grout C et al (2012) Characterization and authenticity of virgin olive oil (Olea europaea L.) cultivars by microsatellite markers. Eur Food Res Tech 234:263–271CrossRefGoogle Scholar
  29. Ben-Ayed R, Kallel I, Hassen H, Rebai A (2014a) SNP marker analysis for validating the authenticity of Tunisian olive oil. J Gen 93:e148Google Scholar
  30. Ben-Ayed R, Sans-Grout C, Moreau F et al (2014b) Genetic similarity among Tunisian olive cultivars and two unknown feral olive trees estimated through SSR markers. Biochem Gen 52:258–268CrossRefGoogle Scholar
  31. Besnard G, Baali-Cherif D (2009) Coexistence of diploids and triploids in a Saharan relict olive: evidence from nuclear microsatellite and flow cytometry analyses. C R Biol 332:1115–1120PubMedCrossRefGoogle Scholar
  32. Besnard G, Rubio de Casas R (2016) Single vs multiple independent olive domestications: the jury is (still) out. New Phytol 209:466–470PubMedCrossRefGoogle Scholar
  33. Besnard G, Baradat PH, Chevalier D et al (2001) Genetic differentiation in the olive complex (Olea europaea) revealed by RAPDs and RFLPs in the rRNA genes. Genet Resour Crop Evol 48:165–182CrossRefGoogle Scholar
  34. Besnard G, Khadari B, Baradat P, Bervillé A (2002) Combination of chloroplast and mitochondrial DNA polymorphism to study cytoplasm genetic differentiation in the olive complex (Olea europaea L.). Theor Appl Genet 105:139–144PubMedCrossRefGoogle Scholar
  35. Besnard G, Christin PA, Baali-Cherif D et al (2007a) Spatial genetic structure in the Laperrine’s olive (Olea europaea subsp. laperrinei), a long-living tree from the central Saharan mountains. Heredity 99:649–657PubMedCrossRefGoogle Scholar
  36. Besnard G, Henry P, Wille L, Cooke D, Chapuis E (2007b) On the origin of the invasive olives (Olea europaea L. Oleaceae). Heredity 99:608–619PubMedCrossRefGoogle Scholar
  37. Besnard G, Rubio de Casas R, Vargas P (2007c) Plastid and nuclear DNA polymorphism reveals historical processes of isolation and reticulation in the olive tree complex (Olea europaea). J Biogeogr 34:736–752CrossRefGoogle Scholar
  38. Besnard G, García-Verdugo C, Rubio de Casas R, Treier UA, Galland N, Vargas P (2008) Polyploidy in the olive complex (Olea europaea L.): evidence from flow cytometry and nuclear microsatellite analyses. Ann Bot 10:25–30CrossRefGoogle Scholar
  39. Besnard G, Rubio de Casas R, Christin PA, Vargas P (2009) Phylogenetics of Olea (Oleaceae) based on plastid and nuclear ribosomal DNA sequences: tertiary climatic shifts and lineage differentiation times. Ann Bot 104:143–160PubMedPubMedCentralCrossRefGoogle Scholar
  40. Besnard G, Hernández P, Khadari B et al (2011) Genomic profiling of plastid DNA variation in the Mediterranean olive tree. BMC Plant Biol 11:80PubMedPubMedCentralCrossRefGoogle Scholar
  41. Besnard G, Anthelme F, Baali-Cherif D (2012) The Laperrine’s olive tree (Oleaceae): a wild genetic resource of the cultivated olive and a model-species for studying the biogeography of the Saharan Mountains. Acta Bot Gallica 159:319–328CrossRefGoogle Scholar
  42. Besnard G, Bakkali AE, Haouane H et al (2013) Population genetics of Mediterranean and Saharan olives: geographic patterns of differentiation and evidence for early generations of admixture. Ann Bot 112:1293–1302PubMedPubMedCentralCrossRefGoogle Scholar
  43. Besnard G, Dupuy J, Larter M et al (2014) History of the invasive African olive tree in Australia and Hawaii: evidence for sequential bottlenecks and hybridization with the Mediterranean olive. Evol Appl 7:195–211PubMedCrossRefGoogle Scholar
  44. Biton I, Shevtsov S, Ostersetzer O et al (2012) Genetic relationships and hybrid vigour in olive (Olea europaea L.) by microsatellites. Plant Breed 131:767–774CrossRefGoogle Scholar
  45. Biton I, Doron-Faigenboim A, Jamwal M et al (2015) Development of a large set of SNP markers for assessing phylogenetic relationships between the olive cultivars composing the Israeli olive germplasm collection. Mol Breed 35:107CrossRefGoogle Scholar
  46. Bousquet J, Cour P, Guerin B, Michel FB (1984) Allergy in the Mediterranean area I. Pollen counts and pollinosis of Montpellier. Clin Allergy 514:249–258CrossRefGoogle Scholar
  47. Bracci T, Sebastiani L, Busconi M et al (2009) SSR markers reveal the uniqueness of olive cultivars from the Italian region of Liguria. Sci Hortic 122:209–215CrossRefGoogle Scholar
  48. Bracci T, Busconi M, Fogher C, Sebastiani L (2011) Overview on molecular studies in olive (Olea europaea L.): DNA markers application and first results in genome analysis. Plant Cell Rep 30:449–462PubMedCrossRefGoogle Scholar
  49. Brake M, Migdadi H, Al-Gharaibeh M et al (2014) Characterization of Jordanian olive cultivars (Olea europaea L.) using RAPD and ISSR molecular markers. Sci Hortic 176:282–289CrossRefGoogle Scholar
  50. Breviglieri N, Battaglia E (1954) Ricerche cariologiche in Olea europaea L. Caryologia 6:271–283CrossRefGoogle Scholar
  51. Brito G, Loureiro J, Lopes T, Rodriguez E, Santos C (2008) Genetic characterisation of olive trees from Madeira Archipelago using flow cytometry and microsatellite markers. Genet Resour Crop Evol 55:657–664CrossRefGoogle Scholar
  52. Brito G, Lopes T, Loureiro J et al (2010) Assessment of genetic stability of two micropropagated wild olive species using flow cytometry and microsatellite markers. Trees 24:723–732CrossRefGoogle Scholar
  53. Bruno L, Chiappetta A, Muzzalupo I et al (2009) Role of geranylgeranyl reductase gene in organ development and stress response in olive (Olea europaea) plants. Funct Plant Biol 36:370–381CrossRefGoogle Scholar
  54. Busconi M, Foroni C, Corradi M et al (2003) DNA extraction from olive oil and its use in the identification of the production cultivar. Food Chem 83:127–134CrossRefGoogle Scholar
  55. Cáceres ME, Ceccarelli M, Pupilli F et al (2015) Obtainment of inter-subspecific hybrids in olive (Olea europaea L.). Euphytica 201:307–319CrossRefGoogle Scholar
  56. Caporali S, Hammami S, Moreno-Alías I et al (2014) Effects of tetraploidy on olive floral and fruit biology. Sci Hortic 179:198–203CrossRefGoogle Scholar
  57. Caruso T, Marra FP, Costa F et al (2014) Genetic diversity and clonal variation within the main Sicilian olive cultivars based on morphological traits and microsatellite markers. Sci Hortic 180:130–138CrossRefGoogle Scholar
  58. Çelikkol Akçay U, Özkan G, Şan B et al (2014) Genetic stability in a predominating turkish olive cultivar, Gemlik, assessed by RAPD, microsatellite, and AFLP marker systems. Turk J Bot 38:430–438CrossRefGoogle Scholar
  59. Chalak L, Haouane H, Essalouh L et al (2015) Extent of the genetic diversity in Lebanese olive (Olea europaea L.) trees: a mixture of an ancient germplasm with recently introduced varieties. Gen Res Crop Evol 62:621–633CrossRefGoogle Scholar
  60. Colao MC, Colli F, Cammilli C et al (2011) Assessment of olive variability in Latium (central Italy) through SNPs, SSRs and morphological traits. Acta Hortic 918:253–260CrossRefGoogle Scholar
  61. Conde C, Agasse A, Silva P et al (2007) OeMST2 encodes a monosaccharide transporter expressed throughout olive fruit maturation. Plant Cell Physiol 48:1299–1308PubMedCrossRefGoogle Scholar
  62. Corrado G, Imperato A, la Mura M et al (2011) Genetic diversity among olive varieties of southern Italy and the traceability of olive oil using SSR markers. J Hortic Sci Biotech 86:461–466CrossRefGoogle Scholar
  63. Coskun F, Parlak S (2013) Molecular phylogenetic analysis of Olea europaea L. subsp. europaea cultivars grown in the Marmara region, Turkey. Sains Malays 42:1357–1364Google Scholar
  64. Costa J, Mafra I, Oliveira MB (2012) Advances in vegetable oil authentication by DNA-based markers. Trends Food Sci Tech 26:43–55CrossRefGoogle Scholar
  65. Cruz F, Julca I, Gómez-Garrido J et al (2016) Genome sequence of the olive tree. Olea europaea. Gigascience 5:29. doi: 10.1186/s13742-016-0134-5 PubMedCrossRefGoogle Scholar
  66. Cultrera NGM, Alagna F, Mariotti R et al (2014) Isolation and molecular characterization of three acyl carrier protein genes in olive (Olea europaea L.). Tree Gen Genomes 10:895. doi: 10.1007/s11295-014-0730-4 CrossRefGoogle Scholar
  67. Cunnane S (2003) Problems with essential fatty acids: time for a new paradigm? Prog Lipid Res 42:544–568PubMedCrossRefGoogle Scholar
  68. de la Leyva-Pérez M, Valverde-Corredor A, Valderrama R et al (2015) Early and delayed long-term transcriptional changes and short-term transient responses during cold acclimation in olive leaves. DNA Res 22:1–11CrossRefGoogle Scholar
  69. De la Rosa R, Angiolillo A, Guerrero M et al (2003) A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor Appl Genet 106:1273–1282PubMedCrossRefGoogle Scholar
  70. De la Rosa R, James CM, Tobutt KH (2004) Using microsatellites for paternity testing in olive progenies. HortSci 39:351–354Google Scholar
  71. De la Rosa R, Belaj A, Muñoz-Mérida A, Trelles O et al (2013) Development of EST-derived SSR markers with long-core repeat in olive and their use for paternity testing. J Am Soc Hortic Sci 138:290–296Google Scholar
  72. Delgado-Martinez FJ, Amaya I, Sánchez-Sevilla JF, Gomez-Jimenez MC (2012) Microsatellite marker-based identification and genetic relationships of olive cultivars from the Extremadura region of Spain. Gen Mol Res 11:918–932CrossRefGoogle Scholar
  73. Diaz A, Martin A, Rallo P, Barranco D, de la Rosa R (2006) Self-incompatibility of ‘Arbequina’ and ‘Picual’ olive assessed by SSR markers. J Am Soc Hortic Sci 131:250–255Google Scholar
  74. Diaz A, de la Rosa R, Rallo P et al (2007) Selections of an olive breeding program identified by microsatellite markers. Crop Sci 47:2317–2322CrossRefGoogle Scholar
  75. Diez CM, Trujillo I, Barrio E, Belaj A, Barranco D, Rallo L (2011) Centennial olive trees as a reservoir of genetic diversity. Ann Bot 108:797–807PubMedPubMedCentralCrossRefGoogle Scholar
  76. Diez CM, Trujillo I, Martinez-Urdiroz N et al (2015) Olive domestication and diversification in the Mediterranean Basin. New Phytol 206:436–447PubMedCrossRefGoogle Scholar
  77. Dominguez-Garcia MC, Laib M, de la Rosa R, Belaj A (2012) Characterisation and identification of olive cultivars from North-eastern Algeria using molecular markers. J Hortic Sci Biotech 87:95–100CrossRefGoogle Scholar
  78. Doveri S, O’Sullivan DM, Lee D (2006) Non-concordance between genetic profiles of olive oil and fruit: a cautionary note to the use of DNA markers for provenance testing. J Agric Food Chem 54:9221–9226PubMedCrossRefGoogle Scholar
  79. El Aabidine AZ, Charafi J, Grout C et al (2010) Construction of a genetic linkage map for the olive based on AFLP and SSR markers. Crop Sci 50:2291–2302CrossRefGoogle Scholar
  80. El Bakkali A, Haouane H, Hadiddou A et al (2013a) Genetic diversity of on-farm selected olive trees in Moroccan traditional olive orchards. Plant Genetic Resour Charact Utilisation 11:97–105CrossRefGoogle Scholar
  81. El Bakkali A, Haouane H, Van Damme P, Khadari B (2013b) Testing different approaches to construct an olive (Olea europaea L.) core subset suitable for association genetic studies. Acta Hortic 976:177–184CrossRefGoogle Scholar
  82. Elsheikh MH, Abdallah ASE, Elsabagh AS (2014) Morphological characterization and genetic analysis using RAPD and ISSR markers of some olive cultivars grown in Egypt. World Appl Sci J 30:420–427Google Scholar
  83. Ercisli S, Bencic D, Ipek A et al (2012) Genetic relationships among olive (Olea europaea L.) cultivars native to Croatia and Turkey. J Appl Bot Food Qual 85:144–149Google Scholar
  84. Essalouh L, Zine El Aabidine A, Contreras S et al (2014) Genomic and EST microsatellite loci development and use in olive: molecular tools for genetic mapping and association studies. Acta Hortic 1057:543–550CrossRefGoogle Scholar
  85. Fernández i Martí A, Font i Forcada C, Rubio-Cabetas MJ, Socias i Company R (2015) Genetic relationships and population structure of local olive tree accessions from Northeastern Spain revealed by SSR markers. Acta Physiol Plant 37:1726CrossRefGoogle Scholar
  86. Figueiredo E, Canhoto J, Ribeiro MM (2013) Fingerprinting and genetic diversity of Olea europaea L. ssp. europaea accessions from the cultivar Galega using RAPD markers. Sci Hortic 156:24–28CrossRefGoogle Scholar
  87. Galla G, Barcaccia G, Ramina A et al (2009) Computational annotation of genes differentially expressed along fruit development. BMC Plant Biol 9:128–144PubMedPubMedCentralCrossRefGoogle Scholar
  88. Ganino T, Bartolini G, Fabbri A (2006) The classification of olive germplasm—a review. J Hortic Sci Biotech 81:319–334CrossRefGoogle Scholar
  89. Ganopoulos I, Bazakos C, Madesis P et al (2013) Barcode DNA high-resolution melting (Bar-HRM) analysis as a novel close-tubed and accurate tool for olive oil forensic use. J Sci Food Agric 93:2281–2286PubMedCrossRefGoogle Scholar
  90. García-Verdugo C, Fay MF, Granado-Yela C et al (2009) Genetic diversity and differentiation processes in the ploidy series of Olea europaea: a multiscale approach from subspecies to insular populations. Mol Ecol 18:454–467PubMedCrossRefGoogle Scholar
  91. Gomes S, Martins-Lopes P, Lopes J, Guedes-Pinto H (2012) Genetic relatedness among Olea europaea L. cultivars estimated by RAPD Analysis. Acta Hortic 949:61–66CrossRefGoogle Scholar
  92. Green PS (2002) A revision of Olea L. (Oleaceae). Kew Bull 57:91–140CrossRefGoogle Scholar
  93. Guasch-Ferré M, Hu FB, Martínez-González MA et al (2014) Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED Study. BMC Med 13:12–78Google Scholar
  94. Guerra D, Lamontanara A, Bagnaresi P et al (2015) Transcriptome changes associated with cold acclimation in leaves of olive tree (Olea europaea L.). Tree Gen Genomes 11:113CrossRefGoogle Scholar
  95. Hamman-Khalifa AM, Castro AJ, Jímenez-López JC et al (2008) Olive cultivar origin is a major cause of polymorphism for Ole e 1 pollen allergen. BMC Plant Biol 8:10–18PubMedPubMedCentralCrossRefGoogle Scholar
  96. Haouane H, El Bakkali A, Moukhli A et al (2011) Genetic structure and core collection of the World Olive Germplasm Bank of Marrakech: towards the optimised management and use of Mediterranean olive genetic resources. Genetica 139:1083–1094PubMedPubMedCentralCrossRefGoogle Scholar
  97. Hatzopoulos P, Banilas G, Giannoulia K et al (2002) Breeding, molecular markers and molecular biology of the olive tree. Eur J Lipid Sci Technol 104:574–586CrossRefGoogle Scholar
  98. Hernández ML, Mancha M, Martínez-Rivas JM (2005) Molecular cloning and characterization of genes encoding two microsomal oleate desaturases (FAD2) from olive. Phytochem 66:1417–1426CrossRefGoogle Scholar
  99. Hernández ML, Padilla MN, Mancha M, Martínez-Rivas JM (2009) Expression analysis identifies FAD2-2 as the olive oleate desaturase gene mainly responsible for the linoleic acid content in virgin olive oil. J Agric Food Chem 57:6199–6206PubMedCrossRefGoogle Scholar
  100. Hernández ML, Padilla MN, Sicardo MD et al (2011) Effect of different environmental stresses on the expression of oleate desaturase genes and fatty acid composition in olive fruit. Phytochem 72:178–187CrossRefGoogle Scholar
  101. Hernández ML, Sicardo MD, Martínez-Rivas JM (2016) Differential contribution of endoplasmic reticulum and chloroplasto-3 fatty acid desaturase genes to the linolenic acid content of olive (Olea europaea) Fruit. Plant Cell Physiol 57:138–151PubMedCrossRefGoogle Scholar
  102. Hess J, Kadereit W, Vargas P (2000) The colonization history of Olea europea L. in Macaronesia based on internal transcribed spacer 1 (ITS-1) sequences, randomly amplified polymorphic DNAs (RAPD) and intersimple sequence repeats (ISSR). Mol Ecol 9:857–868PubMedCrossRefGoogle Scholar
  103. Hindson BJ, Ness KD, Masquelier DA et al (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83:8604–8610PubMedPubMedCentralCrossRefGoogle Scholar
  104. Hosseini-Mazinani M, Mariotti R, Torkzaban B et al (2014) High genetic diversity detected in olives beyond the boundaries of the Mediterranean Sea. PLoS One 9:e93146PubMedPubMedCentralCrossRefGoogle Scholar
  105. Ipek A, Barut E, Gulen H, Ipek M (2012) Assessment of inter- and intra-cultivar variations in olive using SSR markers. Scientia Agricola 69:327–335CrossRefGoogle Scholar
  106. Ipek M, Ipek A, Seker M, Gul MK (2015a) Association of SSR markers with contents of fatty acids in olive oil and genetic diversity analysis of an olive core collection. Gen Mol Res 14:2241–2252CrossRefGoogle Scholar
  107. Ipek M, Seker M, Ipek A, Gul MK (2015b) Identification of molecular markers associated with fruit traits in olive and assessment of olive core collection with AFLP markers and fruit traits. Gen Mol Res 14:2762–2774CrossRefGoogle Scholar
  108. İpek A, Yılmaz K, Sıkıcı P et al (2016) SNP discovery by GBS in olive and the construction of a high-density genetic linkage map. Biochem Gen 54:313–325CrossRefGoogle Scholar
  109. Işik N, Doǧanlar S, Frary A (2011) Genetic diversity of Turkish olive varieties assessed by simple sequence repeat and sequence-related amplified polymorphism markers. Crop Sci 51:1646–1654CrossRefGoogle Scholar
  110. Kalogianni DP, Bazakos C, Boutsika LM et al (2015) Olive oil DNA fingerprinting by multiplex SNP genotyping on fluorescent microspheres. J Agric Food Chem 63:3121–3128PubMedCrossRefGoogle Scholar
  111. Kaniewski D, Van Campo E, Boiy T, Terral JF, Khadari B, Besnard G (2012) Primary domestication and early uses of the emblematic olive tree: palaeobotanical, historical and molecular evidences from the Middle East. Biol Rev 87:885–899PubMedCrossRefGoogle Scholar
  112. Kaya E (2015) ISSR Analysis for Determination of Genetic Diversity and Relationship in Eight Turkish Olive (Olea europaea L.) Cultivars. Notulae Botanicae Horti Agrobotanici Cluj Napoca 43:96–99CrossRefGoogle Scholar
  113. Kaya E, Yilmaz-Gokdogan E (2016) Using two retrotransposon based marker systems (IRAP and REMAP) for molecular characterization of olive (Olea europaea L.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj Napoca 44:167–174CrossRefGoogle Scholar
  114. Kaya HB, Cetin O, Kaya H et al (2013) SNP Discovery by illumina-based transcriptome sequencing of the olive and the genetic characterization of Turkish olive genotypes revealed by AFLP, SSR and SNP markers. PLoS One 8:e73674PubMedPubMedCentralCrossRefGoogle Scholar
  115. Kaya HB, Cetin O, Kaya HS et al (2016) Association mapping in Turkish olive cultivars revealed significant markers related to some important agronomic traits. Biochem Gen 54:506–533CrossRefGoogle Scholar
  116. Keys A (1995) Mediterranean diet and public health: personal reflections. Am J Clin Nutr 61:1321S–1323SPubMedGoogle Scholar
  117. Khadari B, El Aabidine AZ, Grout C et al (2010) A genetic linkage map of olive based on amplified fragment length polymorphism, intersimple sequence repeat and simple sequence repeat markers. J Am Soc Hortic Sci 135:548–555Google Scholar
  118. Khadari B, El Bakkali A, El Aabidine A et al (2014) How can we efficiently characterize genes of agronomic interest in olive: towards the genetic association studies? Acta Hortic 1057:551–558CrossRefGoogle Scholar
  119. Klepo T, De la Rosa R, Satovic Z et al (2013) Utility of wild germplasm in olive breeding. Sci Hortic 152:92–101CrossRefGoogle Scholar
  120. Las Casas G, Scollo F, Distefano G et al (2014) Molecular characterization of olive (Olea europaea L.) Sicilian cultivars using SSR markers. Biochem Syst Ecol 57:15–19CrossRefGoogle Scholar
  121. Lazović B, Adakalić M, Pucci C et al (2016) Characterizing ancient and local olive germplasm from Montenegro. Sci Hortic 209:117–123CrossRefGoogle Scholar
  122. Leva AR, Petruccelli R (2012) Monitoring of cultivar identity in micropropagated olive plants using RAPD and ISSR markers. Biol Plant 56:373–376CrossRefGoogle Scholar
  123. Linos A, Nikoloudakis N, Katsiotis A, Hagidimitriou M (2014) Genetic structure of the Greek olive germplasm revealed by RAPD, ISSR and SSR markers. Sci Hortic 175:33–43CrossRefGoogle Scholar
  124. Loureiro J, Rodriguez E, Costa A, Santos C (2007) Nuclear DNA content estimations in wild olive (Olea europaea L. ssp. europaea var. sylvestris Brot.) and Portuguese cultivars of O. europaea using flow cytometry. Genet Resour Crop Evol 54:21–25CrossRefGoogle Scholar
  125. Marchese A, Marra FP, Caruso T et al (2016a) The first high-density sequence characterized SNP-based linkage map of olive (Olea europaea L. subsp. europaea) developed using genotyping by sequencing. Austr J Crop Sci 10:857–863CrossRefGoogle Scholar
  126. Marchese A, Marra FP, Costa F et al (2016b) An investigation of the self- and inter-incompatibility of the olive cultivars ‘Arbequina’ and ‘Koroneiki’ in the Mediterranean climate of Sicily. Austr J Crop Sci 10:88–93Google Scholar
  127. Mardi M, Zeinalabedini M, Mousavi-Derazmahalleh SM et al (2016) Commercial Iranian olive cultivars: morphological traits, molecular diversity, and genetic structure. J Hortic Sci Biotech 91:404–411CrossRefGoogle Scholar
  128. Mariotti R, Cultrera NGM, Munoz Diez C et al (2010) Identification of new polymorphic regions and differentiation of cultivated olives (Olea europaea L.) through platsome sequence comparison. BMC Plant Biol 10:211PubMedPubMedCentralCrossRefGoogle Scholar
  129. Marra FP, Caruso T, Costa F et al (2013) Genetic relationships, structure and parentage simulation among the olive tree (Olea europaea L. subsp. europaea) cultivated in Southern Italy revealed by SSR markers. Tree Gen Genomes 9:961–973CrossRefGoogle Scholar
  130. Mazzitelli O, Calleja A, Sardella D et al (2014) Analysis of the molecular diversity of Olea europaea in the Mediterranean Island of Malta. Gen Res Crop Evol 62:1021–1027CrossRefGoogle Scholar
  131. Médail F, Quézel P, Besnard G, Khadari B (2001) Systematics, ecology and phylogeographic significance of Olea europaea L. subsp. Maroccana (Greuter & Burdet) P. Vargas et al. a relictual olive tree in south-west Morocco. Bot J Linn Soc 137:249–266Google Scholar
  132. Montemurro C, Miazzi MM, Pasqualone A et al (2015) Traceability of PDO olive oil “terra di Bari” using high resolution melting. J Chem. doi: 10.1155/2015/496986
  133. Mookerjee S, Guerin J, Collins G et al (2005) Paternity analysis using microsatellite markers to identify pollen donors in an olive grove. Theor Appl Genet 111:1174–1182PubMedCrossRefGoogle Scholar
  134. Mousavi S, Hosseini Mazinani M, Arzani K et al (2014) Molecular and morphological characterization of Golestan (Iran) olive ecotypes provides evidence for the presence of promising genotypes. Gen Res Crop Evol 61:775–785CrossRefGoogle Scholar
  135. Muleo R, Morgante M, Velasco R et al (2012) Olive tree genomics. In: Muzzalupo I (ed) Olive germplasm the olive cultivation table olive and olive oil industry in Italy. InTech, Rijeka, pp 133–148Google Scholar
  136. Noormohammadi Z, Sheidai M, Dehghani A et al (2012) Inter-population genetic diversity in Olea cuspidata subsp. cuspidata revealed by SSR and ISSR markers. Acta Biol Szeged 56:155–163Google Scholar
  137. Noormohammadi Z, Trujillo I, Belaj A et al (2014) Genetic structure of Iranian olive cultivars and their relationship with Mediterranean’s cultivars revealed by SSR markers. Sci Hortic 178:175–183CrossRefGoogle Scholar
  138. Obaid R, Abu-Qaoud H, Arafeh R (2014) Molecular characterization of three common olive (Olea europaea L.) cultivars in Palestine, using simple sequence repeat (SSR) markers. Biotech Biotechnol Equip 28:813–817CrossRefGoogle Scholar
  139. Oražem P, Štajner N, Bohanec B (2013) Effect of X-ray irradiation on olive shoot culture evaluated by morphological measurements, nuclear DNA content and SSR and AFLP markers. Trees Struct Funct 27:1587–1595CrossRefGoogle Scholar
  140. Pafundo S, Busconi M, Agrimonti C et al (2010) Storage-time effects on olive oil DNA assessed by amplified fragments length polymorphisms. Food Chem 123:787–793CrossRefGoogle Scholar
  141. Parra-Lobato MC, Delgado-Martinez FJ, Gomez-Jimenez MC (2012) Morphological traits and RAPD markers for characterization and identification of minor Spanish olive cultivars from the Extremadura region. Gen Mol Res 11:2401–2411CrossRefGoogle Scholar
  142. Parvini F, Sicardo MD, Hosseini-Mazinani M et al (2016) Transcriptional analysis of stearoyl-acyl carrier protein desaturase genes from olive (Olea europaea) in relation to the oleic acid content of the virgin olive oil. J Agric Food Chem 64:7770–7781CrossRefGoogle Scholar
  143. Pasqualone A, Montemurro C, di Rienzo V et al (2016) Evolution and perspectives of cultivar identification and traceability from tree to oil and table olives by means of DNA markers. J Sci Food Agric 96:3642–3657PubMedCrossRefGoogle Scholar
  144. Pérez-Jiménez F, Ruano J, Pérez-Martinez P et al (2007) The influence of olive oil on human health: not a question of fat alone. Mol Nutr Food Res 51:1199–1208PubMedCrossRefGoogle Scholar
  145. Pérez-Jiménez M, Besnard G, Dorado G, Hernandez P (2013) Varietal tracing of virgin olive oils based on plastid DNA variation profiling. PLoS One 8:e70507PubMedPubMedCentralCrossRefGoogle Scholar
  146. Perez-Martin A, Michelazzo C, Torres-Ruiz JM et al (2014) Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins. J Exp Bot 65:3143–3156PubMedPubMedCentralCrossRefGoogle Scholar
  147. Petruccelli R, Giordano C, Salvatici MC et al (2014) Observation of eight ancient olive trees (Olea europaea L.) growing in the Garden of Gethsemane. Compt Rendus Biol 337:311–317CrossRefGoogle Scholar
  148. Pinheiro LB, Coleman VA, Hindson CM et al (2012) Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 84:1003–1011PubMedCrossRefGoogle Scholar
  149. Poghosyan ZP, Giannoulia K, Katinakis P et al (2005) Temporal and transient expression of olive enoyl-ACP reductase gene during flower and fruit development. Plant Physiol Biochem 43:37–44PubMedCrossRefGoogle Scholar
  150. Qin Q, Wang NN, Li JH, Su GC (2016) Diversity and cluster analysis on phenotypic traits and SSR of olive cultivars. Forest Res 29:676–681Google Scholar
  151. Raieta K, Muccillo L, Colantuoni V (2015) A novel reliable method of DNA extraction from olive oil suitable for molecular traceability. Food Chem 172:596–602PubMedCrossRefGoogle Scholar
  152. Ramos-Gómez S, Busto MD, Perez-Mateos M, Ortega N (2014) Development of a method to recovery and amplification DNA by real-time PCR from commercial vegetable oils. Food Chem 158:374–383PubMedCrossRefGoogle Scholar
  153. Ramos-Gómez S, Busto MD, Albillos SM, Ortega N (2016) Novel qPCR systems for olive (Olea europaea L.) authentication in oils and food. Food Chem 194:447–454PubMedCrossRefGoogle Scholar
  154. Rehman AU, Mailer RJ, Belaj A et al (2012) Microsatellite marker-based identification of mother plants for the reliable propagation of olive (Olea europaea L.) cultivars in Australia. J Hortic Sci Biotech 87:647–653CrossRefGoogle Scholar
  155. Rigacci S, Stefani M (2016) Nutraceutical properties of olive oil polyphenols. An itinerary from cultured cells through animal models to humans. Int J Mol Sci 17:843PubMedCentralCrossRefGoogle Scholar
  156. Rodríguez R, Villalba M, Batanero E et al (2002) Allergenic diversity of the olive pollen. Allergy S71:6–16CrossRefGoogle Scholar
  157. Rossi S, Calabretta A, Tedeschi T et al (2012) Selective recognition of DNA from olive leaves and olive oil by PNA and modified-PNA microarrays. Artif DNA PNA XNA 3:63–72PubMedPubMedCentralCrossRefGoogle Scholar
  158. Rossi L, Borghi M, Francini A et al (2016) Salt stress induces differential regulation of the phenylpropanoid pathway in Olea europaea cultivars Frantoio (salt-tolerant) and Leccino (salt-sensitive). J Plant Physiol 204:8–15PubMedCrossRefGoogle Scholar
  159. Rotondi A, Beghè D, Fabbri A, Ganino T (2011a) Olive oil traceability by means of chemical and sensory analyses: a comparison with SSR biomolecular profiles. Food Chem 129:1825–1831CrossRefGoogle Scholar
  160. Rotondi A, Cultrera NGM et al (2011b) Genotyping and evaluation of local olive varieties of a climatically disfavoured region through molecular, morphological and oil quality parameters. Sci Hortic 130:562–569CrossRefGoogle Scholar
  161. Rugini E, Baldoni L, Rosario M, Sebastiani L (eds) (2016) The Olive tree genome. Springer International Publishing, New York, p 193. doi: 10.1007/978-3-319-48887-5 Google Scholar
  162. Ryan D, Antolovich M, Herlt T et al (2002) Identification of phenolic compounds in tissues of the novel olive cultivar hardy’s mammoth. J Agric Food Chem 50:6716–6724PubMedCrossRefGoogle Scholar
  163. Saimaru H, Orihara Y, Tansakul P et al (2007) Production of triterpene acids by cell suspension cultures of Olea europaea. Chem Pharm Bull (Tokyo) 55:784–788CrossRefGoogle Scholar
  164. Sakar E, Unver H, Bakir M et al (2016a) Genetic relationships among olive (Olea europaea L.) cultivars native to Turkey. Biochem Gen 54:348–359CrossRefGoogle Scholar
  165. Sakar E, Unver H, Ercisli S (2016b) Genetic diversity among historical olive (Olea europaea L.) genotypes from Southern Anatolia based on SSR markers. Biochem Genet 54:842–853PubMedCrossRefGoogle Scholar
  166. Salimonti A, Simeone V, Cesari G et al (2013) A first molecular investigation of monumental olive trees in Apulia region. Sci Hortic 162:204–212CrossRefGoogle Scholar
  167. Santos-Antunes F, León L, de la Rosa R et al (2005) The length of the juvenile period in olive as influenced by vigor of the seedlings and the precocity of the parents. HortSci 40:1213–1215Google Scholar
  168. Saumitou-Laprade P, Vernet P, Vekemans X et al (2017) Elucidation of the genetic architecture of self-incompatibility in olive: evolutionary consequences and perspectives for orchard management. Evol Appl. doi: 10.1111/eva.12457 Google Scholar
  169. Scollo F, Egea LA, Gentile A et al (2016) Absolute quantification of olive oil DNA by droplet digital-PCR (ddPCR): comparison of isolation and amplification methodologies. Food Chem 213:388–394PubMedCrossRefGoogle Scholar
  170. Secchi F, Lovisolo C, Uehlein N et al (2007) Isolation and functional characterization of three aquaporin from olive (Olea europaea L.). Planta 225:381–392PubMedCrossRefGoogle Scholar
  171. Servili M, Selvaggini R, Esposto S et al (2004) Health and sensory properties of virgin olive oil hydrophilic phenols: agronomic and technological aspects of production that affect their occurrence in the oil. J Chromatogr A 1054:113–127PubMedCrossRefGoogle Scholar
  172. Servili M, Sordini B, Esposto S et al (2014) Biological activities of phenolic compounds of extra virgin olive oil. Antioxidants 3:1–23CrossRefGoogle Scholar
  173. Sheidai M, Yari R, Farahani F, Noormohammadi Z (2014) Evaluation of genetic diversity in cultivated (O. europaea subsp. europaea L. ssp. europea var. europaea) and wild olives (Olea cuspidata Wall) using genome size and RAPD markers. Nucleus (India) 57:215–222CrossRefGoogle Scholar
  174. Shemer A, Biton I, Many Y et al (2014) The olive cultivar ‘Picual’ is an optimal pollen donor for ‘Barnea’. Sci Hortic 172:278–284CrossRefGoogle Scholar
  175. Shibuya M, Zhang H, Endo A et al (1999) Two branches of the lupeol synthase gene in the molecular evolution of plant oxidosqualene cyclases. Eur J Biochem 266:302–307PubMedCrossRefGoogle Scholar
  176. Sorkheh K, Khaleghi E (2016) Molecular characterization of genetic variability and structure of olive (Olea europaea L.) germplasm collection analyzed by agromorphological traits and microsatellite markers. Turk J Agric Forest 40:583–596CrossRefGoogle Scholar
  177. Spaniolas S, Bazakos C, Spano T et al (2010) The potential of plastid trnL (UAA) intron polymorphisms for the identification of the botanical origin of plant oils. Food Chem 122:850–856CrossRefGoogle Scholar
  178. Strikić F, Liber Z, Bandelj Mavsar D et al (2011) Intra-cultivar diversity in the Croatian olive cultivar, ‘Lastovka’. J Hortic Sci Biotech 86:305–311CrossRefGoogle Scholar
  179. Torres MR, Cornejo P, Bertoldi V et al (2014) Development of a microsatellite database for identification of olive (Olea europaea L.) cultivars in Mendoz, Argentinaa. Acta Hortic 1057:521–524CrossRefGoogle Scholar
  180. Trujillo I, Ojeda MA, Urdiroz NM et al (2014) Identification of the Worldwide Olive Germplasm Bank of Córdoba (Spain) using SSR and morphological markers. Tree Gen Genomes 10:141–155CrossRefGoogle Scholar
  181. Uncu AT, Frary A, Doganlar S (2015) Cultivar origin and admixture detection in Turkish olive oils by SNP-Based CAPS assays. J Agric Food Chem 63:2284–2295PubMedCrossRefGoogle Scholar
  182. Unver T, Dorado G, Hernandez P et al (2016) Lessons from whole genome sequencing of olive tree (Olea europaea L.). In: XXIV plant and animal genome conference, W371. San Diego, CAGoogle Scholar
  183. Vietina M, Agrimonti C, Marmiroli M et al (2011) Applicability of SSR markers to the traceability of monovarietal olive oils. J Sci Food Agric 91:1381–1391PubMedCrossRefGoogle Scholar
  184. Vietina M, Agrimonti C, Marmiroli N (2013) Detection of plant oil DNA using high resolution melting (HRM) post PCR analysis: a tool for disclosure of olive oil adulteration. Food Chem 141:3820–3826PubMedCrossRefGoogle Scholar
  185. Wu S, Collins G, Sedgley M (2004) A molecular linkage map of olive (Olea europaea L.) based on RAPD, microsatellite, and SCAR markers. Genome 47:26–35PubMedCrossRefGoogle Scholar
  186. Xanthopoulou A, Ganopoulos I, Koubouris G et al (2014) Microsatellite high-resolution melting (SSR-HRM) analysis for genotyping and molecular characterization of an Olea europaea germplasm collection. Plant Genetic Resour Charact Utilisation 12:273–277CrossRefGoogle Scholar
  187. Zhan MM, Cheng ZZ, Su GC et al (2015) Genetic relationships analysis of olive cultivars grown in China. Gen Mol Res 14:5958–5969CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Life SciencesScuola Superiore Sant’AnnaPisaItaly
  2. 2.Dipartimento di Scienze delle Produzioni Vegetali SostenibiliUniversità Cattolica del Sacro CuorePiacenzaItaly

Personalised recommendations